土木工程畢業(yè)建筑設計_第1頁
土木工程畢業(yè)建筑設計_第2頁
土木工程畢業(yè)建筑設計_第3頁
土木工程畢業(yè)建筑設計_第4頁
土木工程畢業(yè)建筑設計_第5頁
已閱讀5頁,還剩81頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、 PAGE 86 建筑設計建筑設計是在總體規(guī)劃的前提下,根據(jù)任務書的要求綜合考慮基地環(huán)境,使用功能,結構施工,材料設備,建筑經(jīng)濟及建筑藝術等問題。著重解決建筑物內部各種使用功能和使用空間的合理安排,建筑與周圍環(huán)境,與各種外部條件的協(xié)調配合,內部和外表的藝術效果。各個細部的構造方式等。創(chuàng)造出既符合科學性又具有藝術的生產和生活環(huán)境。建筑設計在整個工程設計中起著主導和先行的作用,除考慮上述各種要求以外,還應考慮建筑與結構,建筑與各種設備等相關技術的綜合協(xié)調,以及如何以更少的材料,勞動力,投資和時間來實現(xiàn)各種要求,使建筑物做到適用,經(jīng)濟,堅固,美觀,這要求建筑師認真學習和貫徹建筑方針政策,正確學習掌握

2、建筑標準,同時要具有廣泛的科學技術知識。建筑設計包括總體設計和個體設計兩部分。1 設計任務本設計的主要內容是,設計上航國際酒店客房部分,客房屬于居住類建筑。作為一個居住空間設計,要在平面規(guī)劃中自始至終遵循實用、功能需求和人性化管理充分結合的原則。在設計中,既結合客房需求和酒店管理流程,科學合理的劃分職能區(qū)域,。材料運用簡潔,大方,耐磨,環(huán)保的現(xiàn)代材料,在照明采光上使用全局照明,能滿足酒店客房功能的需要.經(jīng)過精心設計,在滿足各種客房需要的同時,又簡潔,大方,美觀,能充分體現(xiàn)出企業(yè)的形象與現(xiàn)代感.2 設計要求建筑法規(guī)、規(guī)范和一些相應的建筑標準是對該行業(yè)行為和經(jīng)驗的不斷總結,具有指導意義,尤其是一些

3、強制性規(guī)范和標準,具有法定意義。建筑設計除了應滿足相關的建筑標準、規(guī)范等要求之外,原則上還應符合以下要求:(1) 滿足建筑功能要求:(2) 符合所在地規(guī)劃發(fā)展的要求并具有良好的視覺效果;(3) 采用合理的技術措施;(4) 提供在投資計劃所允許的經(jīng)濟范疇內運作的可行性。3 氣象條件建設地區(qū)的溫度、濕度、日照、雨雪、風向、風速等是建筑設計的重要依據(jù),例如:炎熱地區(qū)的建筑應考慮隔熱、通風、遮陽、建筑處理較為開敞;在確定建筑物間距及朝向時,應考慮當?shù)厝照涨闆r及主要風向等因素。4 地形、地質及地震烈度基地的地形,地質及地震烈度直接影響到房屋的平面組織結構選型、建筑構造處理及建筑體型設計等。地震烈度,表示

4、當發(fā)生地震時,地面及建筑物遭受破壞的程度。烈度在6度以下時,地震對建筑物影響較小,一般可不做抗震計算,9度以上地區(qū),地震破壞力很大,一般應尺量避免在該地區(qū)建筑房屋,建筑物抗震設防的重點時7、8、9度地震烈度的地區(qū)。5 水文水文條件是指地下水位的高低及地下水的性質,直接影響到建筑物基礎及地下室。一般應根據(jù)地下水位的高低及底下水位性質確定是否在該地區(qū)建筑房屋或采用相應的防水和防腐措施。6建筑設計文件的內容及要求建筑初步設計內容:繪制“3平2立1剖”:“3平”即1個底層平面圖,1個樓層平面圖,加1個屋頂平面圖;“2立”指1個南側或北側立面圖,加1個東側或西側立面圖;“1剖”必須剖到樓梯。 建筑設計文

5、件要求:以上圖紙均需達到施工圖深度,弄清建筑平面、立面和剖面之間的關系,熟悉建筑施工圖的表達方式及深度要求,掌握常用的建筑構造措施等。建議用2號圖繪制,繪圖比例、布局和張數(shù)自定,以表達清楚且符合制圖習慣為原則。 結構設計第一章基本設計資料11 設計資料工程名稱:上杭客家緣國際酒店客房A1區(qū)設計建設地點:福建上杭市工程概況:共4層,底層高6.05m,其余層高4.4m。室內外高差為0.45mm,底層室內設計標高0.000?;撅L壓:0.13kN/m2基本雪壓:0.45kN/m2抗震設防:按7度抗震設防烈度進行抗震設計,第一設計分組,地震加速度0.1g。12 結構設計的一般原則121 結構設計目的工

6、程設計是工程建設的首要環(huán)節(jié),是整個工程的靈魂。先進合理的設計對于改建、擴建、新建項目縮短工期、節(jié)約投資、提高經(jīng)濟效益起著關鍵作用,使項目達到安全、適用、經(jīng)濟、美觀的要求。因而建筑結構設計的基本目的就是要在一定經(jīng)濟條件下賦予結構以適當?shù)目煽慷龋菇Y構在預定的基準期內能滿足設計所預期的各種功能要求。122 結構設計的一般原則為了達到建筑設計的基本目的,結構設計中應符合以下一般原則:符合設計規(guī)范;選擇合理的結構設計方案;減輕結構自重;采用先進技術。13 結構選型131 結構體系選型對于一般多層民用建筑,根據(jù)使用和工藝要求、材料供應情況和施工技術條件,常選用的結構形式有混合結構、鋼筋混凝土框架結構和框

7、架剪力墻結構等結構體系。由于混合結構整體性差,難于滿足大空間的使用要求,而框架剪力墻結構多用于1025層的高層建筑。而框架結構強度高、結構自重輕,可以承受較大樓面荷載,在水平作用下具有較大的延性。此外框架結構平面布置靈活,能設置大空間,易于滿足建筑功能要求。故該五層辦公樓選用框架結構。132 框架施工方法鋼筋混凝土框架結構按施工方法不同,有現(xiàn)澆式、裝配式和整體裝配式三種?,F(xiàn)澆式框架的全部構件都在現(xiàn)場整體澆筑,其整體性和抗震性能好,能較好的滿足使用要求。故框架采用現(xiàn)澆施工方法。133 其他結構選型1. 屋面結構:采用現(xiàn)澆鋼筋混凝土肋形屋蓋,屋面板厚120mm。2. 樓面結構:采用現(xiàn)澆鋼筋混凝土肋

8、形樓蓋,露面板厚120mm。3. 樓梯結構:采用鋼筋混凝土板式樓梯。4. 過梁:門窗過梁均采用鋼筋混凝土梁。5. 墻基礎:因持力層不太深,承載力高,采用自乘墻基大放腳。6. 基礎:因基礎持力層不太深,地基承載力高,采用鋼筋混凝土柱下獨立基礎。結構布置及計算簡圖 21 簡化假定建筑物是復雜的空間結構體系,要精確地按照三維空間結構來進行內力和位移分析十分困難。為簡化計算,對結構體系引入以下基本假定:(1) 在正常設計、正常施工和正常使用的條件下,結構物在設計基準期內處于彈性工作階段,其內力和位移均按彈性方法計算;(2) 樓面(或屋面)在自身平面內的剛度無限大,在平面外的剛度很小,可忽略不計。22

9、計算單元多層框架結構是由縱、橫向框架結構組成的空間結構體系,在豎向荷載作用下,各個框架之間的受力影響較小。本設計中取KJ2作為計算單元 ,如圖21所示:23 計算簡圖現(xiàn)澆多層框架結構設計計算模型是以梁、柱截面幾何軸線來確定,并認為框架柱在基礎頂面為固接,框架各節(jié)點縱、橫向均為剛接。一般情況下,取框架梁、柱截面幾何軸線之間的距離作為框架的跨度和柱高度。底層柱高從基礎頂面算至二層樓面,基礎頂面標高根據(jù)地質條件、室內外高差定為0.45m,二層樓面標高為4.4m,故底層柱高為7m。其余各層柱高為樓層高4.4m。由此可繪出框架計算簡圖,如圖22所示: 圖22 框架結構計算簡圖24 梁柱截面尺寸及慣性矩多

10、層框架結構是超靜定結構,在計算內力前必須先確定桿件的截面形狀、尺寸和慣性矩。1 初估構件截面尺寸及線剛度(1)梁截面尺寸 AB梁 l=9000mm, 取h=800mm 取b=300mm 則取AB梁截面尺寸為:hb=300mm800mmBC梁l=2100mm, 考慮剛度因素,取為方便施工,取 則取BC梁截面尺寸為:hb=300mm500mm CD梁 l=5000mm, 取h=600mm 取b=300mm 則取CD梁截面尺寸為:hb=300mm600mm 橫向次梁 l=9000mm 取h=700mm 取b=30mm 則取橫向次梁截面尺寸為: hb=300mm700mm (2). 柱截面尺寸 底層柱

11、尺寸 按軸壓比要求計算,由公式 : 式中: 軸壓比取0.9;軸壓比增大系數(shù),本設計取=1.2; F柱的荷載面積; 單位建筑面積上重力荷載值,近似取12-15 kN/m2; n驗算截面以上樓層層數(shù)。 對于頂層中柱: 如取柱截面為正方形,則其邊長為510.69。 根據(jù)以上計算結果,并考慮其他因素,本設計中所有柱子截面尺寸都取600mm600mm。 非計算單元的內梁截面尺寸初估方法如上,計算從略。2. 框架梁、柱線剛度計算 由于現(xiàn)澆樓面可以作為梁的有效翼緣,增大梁的有效剛度,減少框架側移。考慮這一有利因素,邊框架梁取,對中框架梁取。(為梁矩形截面慣性矩) AB梁: BC梁: CD梁: 柱: 底層 中

12、間層 相對線剛度:取則其余各桿件相對線剛度為: 梁: AB梁 BC梁 CD梁 底層柱 框架梁、柱的相對線剛度如圖23所示,將作為計算節(jié)點桿端彎矩分配系數(shù)的依據(jù)。 圖23 梁柱相對線剛度圖第三章 重力荷載代表值的計算31 恒載標準值計算1. 屋面防水層(剛性):30mm厚C20細石混凝土防水 1.00kN/m2 防水層(柔性):三氈四油鋪小石子 0.40kN/m2找平層:15mm厚水泥砂漿 0.01520 kN/m3=0.30kN/m2找坡層:平均40mm厚水泥焦渣找坡 0.04014 kN/m3=0.56kN/m2保溫層:60mm厚1:10水泥膨脹珍珠巖 0.06012 kN/m3=0.72k

13、N/m2結構層:120mm厚現(xiàn)澆鋼筋混凝土板 0.12025 kN/m3=3.00kN/m2抹灰層:10mm厚混合砂漿 0.01017 kN/m3=0.17 kN/m2合計 6.15kN/m22. 各層樓面(含走廊)水磨石地面(10mm厚面層,20mm厚水泥砂漿打底) 0.65kN/m2結構層:120mm厚現(xiàn)澆鋼筋混凝土板 0.12025 kN/m3=3.00kN/m2抹灰層:10mm厚混合砂漿 0.01017 kN/m3=0.17kN/m2合計 3.82kN/m2 3. 各梁自重 AB梁hb=300mm800mm梁自重: 0.3(0.8-0.12)25 kN/m3=5.1kN/m抹灰層:10

14、mm厚混合砂漿 0.01(0.8-0.12+0.3/2) 217 kN/m3=0.28kN/m 合計 4.60kN/m 橫向次梁hb=300mm700mm梁自重: 0.3(0.7-0.12)25 kN/m3=4.35kN/m抹灰層:10mm厚混合砂漿 0.01(0.7-0.12+0.25/2) 217 kN/m3=0.25kN/m 合計 4.60kN/m BC梁hb=300mm500mm梁自重: 0.3(0.5-0.12)25 kN/m3=2.85kN/m抹灰層:10mm厚混合砂漿 0.01(0.5-0.12+0.3/2) 217 kN/m3=0.18kN/m 合計 3.03kN/m CD梁h

15、b=300mm600mm梁自重: 0.3(0.6-0.12)25 kN/m3=3.0kN/m抹灰層:10mm厚混合砂漿 0.01(0.6-0.12+0.3/2) 217 kN/m3=0.21kN/m 合計 3.21kN/m 4. 柱自重 hb=600mm600mm柱自重: 0.60.625 kN/m3=9kN/m抹灰層:10mm厚混合砂漿 0.01(0.6+0.6) 217 kN/m3=0.41kN/m 合計 9.41kN/m 5. 外縱墻自重 標準層縱墻: (4.4-0.8)(9-0.5)-32.12 0.248 kN=33.86kN鋁合金窗(32.1): 32.120.35 kN=4.41

16、kN貼瓷磚外墻面: 4.4(9-0.6)-32.12 0.5 kN=12.18kN水泥粉刷內墻面: 4.4(9-0.6)-32.12 0.36 kN=8.77kN 合計 59.85kN 底層縱墻: (6.05-0.8)(9-0.6)-32.12 0.248 kN=60.48kN鋁合金窗(1.51.5): 32.120.35 kN=4.41kN貼瓷磚外墻面: 6.05(9-0.6)-32.12 0.5 kN=19.11kN水泥粉刷內墻面: 6.05(9-0.6)-32.12 0.36 kN=13.76kN 合計 84.00kN6. 內縱墻自重 標準層縱墻: (4.4-0.8)(9-0.6)-0.

17、92.12 0.248 kN=.49.7kN門(hb=0.92.1): 5 kN=0.65kN粉刷墻面: (4.4-0.8)(9-0.6)-0.92.12 0.362 kN=18.63kN 合計 68.99kN/m 底層 縱墻: (6.05-0.8)(9-0.6)-0.92.12 0.248 kN=77.41kN門(hb=0.92.1): 5 kN=0.65kN粉刷墻面: (6.05-0.8)(9-0.5)-0.92.12 0.362 kN=27.17kN 合計 105.23kN/m 7. 內隔墻自重AB跨標準層墻重: (4.4-0.7)(9-0.6)0

18、.28 kN=50.32kN粉刷墻面: (4.4-0.7)(9-0.6) 0.362 kN=22.6kN 合計 72.92kN 底層墻重: (7-0.7)(9-0.6)0.28 kN=72.76kN粉刷墻面: (6.05-0.7)(9-0.6) 0.362 kN=32.74kN 合計 105.50kN CD跨 標準層墻重: (4.4-0.6)(5-0.6)0.28 kN=26.75kN粉刷墻面: (4.4-0.7)(9-0.6) 0.362 kN=12.04kN 合計 38.79kN 底層墻重: (7-0.-0.6)(5-0.6)0.28 kN=45.06kN粉刷墻面: (6.05-0.6)(

19、5-0.6) 0.362 kN=17.27kN 合計 62.33kN 3.2 活荷載標準值計算1. 屋面和樓面活荷載標準值上人屋面:2.0kN/m2樓面:辦公室:2.0kN/m2 ;走廊:2.0kN/m22.雪荷載:基本雪壓:0.45kN/m2雪荷載標準值:屋面活荷載和雪荷載不同時考慮,二者中取大值。33 豎向荷載下框架受荷總圖板傳至梁上的三角形或梯形荷載為均布荷載,荷載的傳遞示意圖,如圖31所示:圖3-1 荷載傳遞示意圖屋面板傳荷載:1. A-B軸間框架梁恒載: 活載: 樓面板傳荷載:荷載傳遞示意圖如圖24所示恒載: 活載: 梁自重: 5.38 kN/m AB軸間框架梁均布荷載為:屋面梁:恒

20、載=梁自重+板傳荷載 = 5.38+23.7=29.04kN/m 活載=板傳荷載 =7.7kN/m樓面梁:恒載=梁自重+板傳荷載 =5.38+14.72=20.1 活載=板傳荷載 =7.7kN/m2. BC軸間框架梁均布荷載為:梁自重: 3.03kN/m屋面梁:恒載=梁自重 =3.03kN/m 活載=0樓面梁:恒載=梁自重 =3.03kN/m 活載=0CD軸間框架梁均布荷載為:屋面板傳荷載恒載: 活載: 樓面板傳荷載:恒載: 活載: 梁自重: 3.21kN/m CD軸間框架梁均布荷載為:屋面梁:恒載=梁自重+板傳荷載 = 3.21+19.2=22.41kN/m 活載=板傳荷載 =6.25kN/

21、m樓面梁:恒載=梁自重+板傳荷載 =3.21+11.9=15.11kN/m 活載=板傳荷載 =6.25kN/m4.A軸柱縱向集中荷載的計算頂層柱:女兒墻自重(做法:墻高1100mm,混凝土壓頂100mm)頂層柱恒載=女兒墻+縱梁自重+板傳荷載 頂層柱活載=板傳荷載 標準層柱恒載=外縱墻自重+縱梁自重+板傳荷載+橫隔墻 頂層柱活載=板傳荷載 5. B軸柱縱向集中荷載的計算頂層柱恒載=縱梁自重+板傳荷載 頂層柱活載=板傳荷載 標準層柱恒載=內縱墻自重+縱梁自重+板傳荷載+橫隔墻標準層柱活載=板傳荷載 6、C軸柱縱向集中荷載的計算 頂層柱恒載=縱梁自重+板傳荷載 頂層柱活載=板傳荷載 標準層柱恒載=

22、內縱墻自重+縱梁自重+板傳荷載+橫隔墻標準層柱活載=板傳荷載 D軸柱縱向集中荷載計算 頂層柱恒載=女兒墻自重+外縱梁自重+板傳荷載頂層柱活載=板傳荷載 標準層柱恒載=外縱墻自重+縱梁自重+板傳荷載+橫隔墻標準層柱活載=板傳荷載由上可作出框架在豎向荷載作用下的受荷總圖,如圖32所示:圖32 豎向荷載作用下受荷總圖 第四章 風荷載計算4.1荷載計算作用在屋面梁和摟面梁節(jié)點處的集中風荷載標準值:為了簡化計算,通常將計算單元范圍內外墻面的分布荷載化為等量的作用于樓面的集中風荷載。式中:基本風壓 風壓高度變化系數(shù)。因建設地點處于大城市郊區(qū),地面粗糙程度為B類; 風荷載體型系數(shù),查表取=1.3; 風振系數(shù)

23、。由于結構高度小于30m,且高寬比19.25/32.2=0.591.5,則取=1.0; 下層柱高; 上層柱高,頂層取女兒墻高度的兩倍; B計算單元迎風面寬度(B=9m)計算過程見表31表41 風荷載標準值計算層數(shù)離地高度419.251.0 1.3 0.825 0.134.4 2.44.27 314.851.0 1.3 0.7 4.95210.451.0 1.3 0.740.134.4 4.4 4.95 16.051.0 1.3 0.740.136.05 4.4 5.88 荷載作用如圖4-1所示 圖4-1 風荷載作用示意圖4.2 風荷載側驗算4.2.1. 側移剛度見表32和

24、表33表42 橫向24層D值的計算構件名稱A軸柱0.36716724B軸柱0.54224725C軸柱0.51123311D軸柱0.30613960表43 橫向底層D值的計算構件名稱A軸柱0.6099244B軸柱0.74011232C軸柱0.71810899D軸柱0.55984854.2.2 風荷載下框架位移計算水平荷載作用下框架的層間側移可按下式計算:式中: 第j層的剪力; 第j層所有柱的抗側剛度之和; 第j層的層間位移。第一層的層間位移值求出以后,就可以計算各樓板標高處的側移值的頂點側移值,各層樓板標高處的側移值應該是該層以下各層層間側移之和,頂點側移是所有各層層間側移之和。j層側移 頂點側

25、移 框架在風荷載下側移的計算見表24,如下:表24 框架在風荷載下側移計算層號44.274.27787200.0000570.00001334.959.22787200.0001230.000027924.9514.17787200.0001890.000042915.8820.05398600.0005010.0000828=0.00087側移驗算:層間最大側移值為: 0.00008281/550,滿足要求頂點側移 =0.00087m且 u/H=1/7832 750 m/s, 360m/s to 750 m/s, 180 m/s to 360 m/s, and 180 m/s, respec

26、tively. The ground motion data are chosen from different destructive earthquakes around the world earthquake name, date of earthquake, data source, record name, peak ground accelerations (pga) for the components, effective durations and fault types for each data are presented in the Table1., respect

27、ively.The peak ground accelerations are in the range 0.046 to 0.395g, where g is acceleration due to gravity. All ground motion data are recorded in near-field region as in maximum 20 km distance.DESCRIPTION OF THE FRAME STRUCTURES3, 5, 8 and 15-story RC frame structures with typical cross-sections

28、and steel reinforcements are shown in Figure 1. The reinforced concrete frame structures have been designed according to the rules of the Turkish Code. The structures have been considered as an important class 1 with subsoil type of Z1 and in seismic region 1. The dead, live and seismic loads have b

29、een taken account during design.All reinforced concrete frame structures consist three-bay frame, spaced at 800 cm. The story height is 300 cm. The columns are assumed as fixed on the ground. Yield strength of the steel reinforcements is 22 kN/cm2 and compressive strength of concrete is 1.6kN/cm2.Th

30、e first natural period of the 3-story frame structure is computed 0.54 s. The cross-section of all beams in this frame is rectangular-shapes with 25cm width and 50cm height. The cross-section of all columns is 30cmx30cm. The first natural period of 5-story frame structure is 0.72 s and the cross-sec

31、tion of beams is 25cm width and 50cm height similar to 3-story frame. Cross-section of columns at the first three stories is 40cmx40cm and at the last two stories, it is 30cmx30cm. The eight-story and 15-story frame structures have natural period of 0.90 s and 1.20 s. The cross section of beams for

32、both frame structures is 25cmx55cm. The 8-story frame structure has 50cmx50cm columns for the first five stories and 40cmx40cm for the last three stories. The cross section of columns for first eight stories in the 15-story frame structures is 80cmx80cm and at the last seven stories, it is 60cmx60cm

33、.NONLINEAR STATIC PUSHOVER ANALYSIS OF FRAME STRUCTURESFor low performance levels, to estimate the demands, it is required to consider inelastic behavior of the structure. Pushover analysis is used to identify the seismic hazards, selection of the performance levels and design performance objectives

34、. In Pushover analysis, applying lateral loads in patterns that represent approximately the relative inertial forces generated at each floor level and pushing the structure under lateral loads to displacements that are larger than the maximum displacements expected in design earthquakes (Li, Y.R., 1

35、996). The pushover analysis provides a shear vs. displacement relationship and indicates the inelastic limit as well as lateral load capacity of the structure. The changes in slope of this curve give an indication of yielding of various structural elements. The main aim of the pushover analysis is t

36、o determine member forces and global and local deformation capacity of a structure. The information can be used to assess the integrity of the structure.After designing and detailing the reinforced concrete frame structures, a nonlinear pushover analysis is carried out for evaluating the structural

37、seismic response. For this purpose the computer program Drain 2D has been used. Three simplified loading patterns; triangular, (IBC, k=1), (IBC, k=2) and rectangular, where k is an exponent related to the structure period to define vertical distribution factor, are used in the nonlinear static pusho

38、ver analysis of 3, 5, 8 and 15-story RC frame structures.Load criteria are based on the distribution of inertial forces of design parameters. The simplified loading patterns as uniform distribution, triangular distribution and IBC distribution, these loading patterns are the most common loading para

39、meters.Vertical Distribution of Seismic Forces: (1) (2)where:Cvx= Vertical distribution factorV = Total design lateral force or shear at the base of structurewi and wx = The portion of the total gravity load of the structurehi and hx = The height from the basek = An exponent related to the structure

40、 periodIn addition these lateral loadings, frames are subjected live loads and dead weights. P- effects have been taken into the account during the pushover analyses. The lateral force is increased for 3, 5 and 8-story frames until the roof displacement reached 50 cm and 100cm for15-story frame. Bea

41、m and column elements are used to analyze the frames. The beams are assumed to be rigid in the horizontal plane. Inelastic effects are assigned to plastic hinges at member ends. Strain-hardening is neglected in all elements. Bilinear moment-rotation relationship is assumed for both beam and column m

42、embers. Axial load-Moment, P-M, interaction relation, suggested by ACI 318-89, is used as yielding surface of column elements. Inertial moment of cracked section, Icr, is used for both column and beam members during analyses. Icr is computed as half of the gross moment of inertia, Ig.The results of

43、the pushover analyses are presented in Figures 2 to 5. The pushover curves are shown for three distributions, and for each frame structures. The curves represent base shear-weight ratio versus story level displacements for uniform, triangular and IBC load distribution. Shear V was calculated by summ

44、ing all applied lateral loads above the ground level, and the weight of the building W is the summation of the weights of all floors. Beside these, these curves represent the lost of lateral load resisting capacity and shear failures of a column at the displacement level. The changes in slope of the

45、se curves give an indication of yielding of various structural elements, first yielding of beam, first yielding of column and shear failure in the members. By the increase in the height of the frame structures, first yielding and shear failure of the columns is experienced at a larger roof displacem

46、ents (Figures 2-5.) and rectangular distribution always give the higher base shear-weight ratio comparing to other load distributions for the corresponding story displacement (horizontal displacement).NONLINEAR DYNAMIC TIME HISTORY ANALYSIS OF FRAME STRUCTURESAfter performing pushover analyses, nonl

47、inear dynamic time history analyses have been employed to the four different story frame structures. These frames are subjected live and dead weights. Also P- effects are under consideration as in pushover analysis. For time history analysis P- effects have been taken into the account. Finite elemen

48、t procedure is employed for the modeling of the structures during the nonlinear dynamic time history analyses. Drain 2D has been used for nonlinear time history analysis and modeling. The model described for pushover analyses has been used for the time history analyses. Mass is assumed to be lumped

49、at the joints.The frames are subjected to 50 earthquake ground motions, which are recorded during Anza (Horse Cany), Parkfield, Morgan Hill, Kocaeli, Coyota Lake, N. Palm Springs, Northridge, Santa Barbara, Imperial Valley, Cape Mendocino, Kobe, Central California, Lytle Creek, Whittier Narrows, Hol

50、lister Westmoreland, Landers, Livermor and Cape Mendocino earthquakes, for the nonlinear dynamic time history analyses. These data are from different site classes as A, B, C and D.The selected earthquake ground motions have different frequency contents and peak ground accelerations.The ground motion

51、 data are chosen from near-field region to evaluate the response of the frame structures in this region and comparison of them with pushover analyses results. The results of nonlinear time history analysis for 3, 5, 8 and15-story frame structures are presented in Figure 6. Pushover and nonlinear tim

52、e history analyses results are compared to for specific natural period for four different frame structure and for each load distributions; rectangular, triangular and IBC (k=2).CONCLUSIONSAfter designing and detailing the reinforced concrete frame structures, a nonlinear pushover analysis and nonlin

53、ear dynamic time history analysis are carried out for evaluating the structural seismic response for the acceptance of load distribution for inelastic behavior. It is assumed for pushover analysis that seismic demands at the target displacement are approximately maximum seismic demands during the ea

54、rthquake.According to Figures 2, 3, 4 and 5, for higher story frame structures, first yielding and shear failure of the columns is experienced at the larger story displacements and rectangular distribution always give the higher base shear-weight ratio comparing to other load distributions for the c

55、orresponding story displacement.As it is presented in Figure 6, nonlinear static pushover analyses for IBC (k=2), rectangular, and triangular load distribution and nonlinear time history analyses results for the chosen ground motion data (all of them are near-field data) are compared. Pushover curve

56、s do not match with nonlinear dynamic time history analysis results especially for higher story reinforced pushover analyses results for rectangular load distribution estimate maximum seismic demands during the given earthquakes more reasonable than the other load distributions, IBC (k=2), and trian

57、gular.REFERENCES1. ATC-40 (1996), “Seismic evaluation and Retrofit of Concrete Buildings”, Vol.1, Applied Technology Council, Redwood City, CA.2. FEMA 273 (1997). “NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency”, Washington D.C.3. IBC (2000) “Intern

58、ational Building Code”.4. Prakash, V., Powell, G., Campbell, S. (1993), DRAIN 2D User Guide V 1.10, University of California at Berkeley, CA.5. Li, Y.R. (1996), “Non-Linear Time History And Pushover Analyses for Seismic Design and Evaluation” PhD Thesis, University of Texas, Austin, TX.6. Vision 200

59、0 Committee (1995). Structural Engineering Association of California, CA.靜力彈塑性分析法在側向荷載分布方式下的評估研究Armagan KORKMAZ1, Ali SARI21訪問學者,土木工程學院, 得克薩斯大學, 奧斯汀, TX 78712, PH: 512-232-9216; 2博士, 土木工程學院, 得克薩斯大學, 奧斯汀, TX 78712, PH: 512-232-9216; ali_摘要:這項研究的目的是通過彈塑性分析法和非線性

60、時程分析法來評估框架結構的性能或多種荷載形式及自然周期的多樣性。彈塑性分析法的荷載分布狀態(tài)有三角形、IBC(k=2),和矩形。在這個研究中四種典型的鋼筋混凝土框架結構被采用,它們分別有四種不同的自然周期。非線性時程分析法是計算地震的最好方法,但美國的FEMA-273容量震譜法和ATC-40位移系數(shù)法推薦使用靜力彈塑性分析法。這篇論文將比較分別利用靜力彈塑性分析法與非線性時程分析法分析所得到的結果。為了評估彈塑性分析法在三種不同荷載形式和四種自然周期下的結果,非線性時程分析法也被執(zhí)行來對照。在不同地震下分布在全球的50個站點紀錄了地面運動情況被用來做分析,通過比較靜力彈塑性分析法和非線性時程分析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論