武漢2021-2022學年高三下學期第六次檢測數(shù)學試卷含解析_第1頁
武漢2021-2022學年高三下學期第六次檢測數(shù)學試卷含解析_第2頁
武漢2021-2022學年高三下學期第六次檢測數(shù)學試卷含解析_第3頁
武漢2021-2022學年高三下學期第六次檢測數(shù)學試卷含解析_第4頁
武漢2021-2022學年高三下學期第六次檢測數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2答題前,認真閱讀答題紙上的注意事項,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1對于定義在上的函數(shù),若下列說法中有且僅有一個是錯誤的,則錯誤的一個是( )A在上是減函數(shù)B在上是增函數(shù)C不是函數(shù)的最小值D對于,都有2函數(shù)在上單調遞減,且是偶函數(shù),若 ,則 的取值范圍是()A(2,+)B(,1)(2,+)C(1,2)D(,1

2、)3已知函數(shù)(,),將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的部分圖象如圖所示,則是的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件4下列結論中正確的個數(shù)是( )已知函數(shù)是一次函數(shù),若數(shù)列通項公式為,則該數(shù)列是等差數(shù)列;若直線上有兩個不同的點到平面的距離相等,則;在中,“”是“”的必要不充分條件;若,則的最大值為2.A1B2C3D05已知,則的大小關系是( )ABCD6已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為( )ABCD7已知向量,則與共線的單位向量為( )ABC或D或8一輛郵車從地往地運送郵件,沿途共有地,依次記為,(為地,為地)從地出發(fā)時,裝上發(fā)往

3、后面地的郵件各1件,到達后面各地后卸下前面各地發(fā)往該地的郵件,同時裝上該地發(fā)往后面各地的郵件各1件,記該郵車到達,各地裝卸完畢后剩余的郵件數(shù)記為則的表達式為( )ABCD9如圖是一個幾何體的三視圖,則這個幾何體的體積為( )ABCD10已知集合,若,則的最小值為( )A1B2C3D411已知函數(shù)若恒成立,則實數(shù)的取值范圍是( )ABCD12已知數(shù)列中,(),則等于( )ABCD2二、填空題:本題共4小題,每小題5分,共20分。13函數(shù)的定義域是_14的三個內角A,B,C所對應的邊分別為a,b,c,已知,則_.15已知點是直線上的一點,將直線繞點逆時針方向旋轉角,所得直線方程是,若將它繼續(xù)旋轉角

4、,所得直線方程是,則直線的方程是_.16滿足約束條件的目標函數(shù)的最小值是 . 三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)某工廠生產一種產品的標準長度為,只要誤差的絕對值不超過就認為合格,工廠質檢部抽檢了某批次產品1000件,檢測其長度,繪制條形統(tǒng)計圖如圖:(1)估計該批次產品長度誤差絕對值的數(shù)學期望;(2)如果視該批次產品樣本的頻率為總體的概率,要求從工廠生產的產品中隨機抽取2件,假設其中至少有1件是標準長度產品的概率不小于0.8時,該設備符合生產要求.現(xiàn)有設備是否符合此要求?若不符合此要求,求出符合要求時,生產一件產品為標準長度的概率的最小值.18(12分)

5、已知函數(shù)(1)若,證明:當時,;(2)若在只有一個零點,求的值.19(12分)已知,求的最小值.20(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若點在曲線上,點在曲線上,求的最小值及此時點的坐標.21(12分)己知的內角的對邊分別為.設(1)求的值;(2)若,且,求的值.22(10分)已知數(shù)列,數(shù)列滿足,n(1)若,求數(shù)列的前2n項和;(2)若數(shù)列為等差數(shù)列,且對任意n,恒成立當數(shù)列為等差數(shù)列時,求證:數(shù)列,的公差相等;數(shù)列能否為等比數(shù)列?若能,請寫出所有滿足條件的數(shù)

6、列;若不能,請說明理由參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】根據函數(shù)對稱性和單調性的關系,進行判斷即可【詳解】由得關于對稱,若關于對稱,則函數(shù)在上不可能是單調的,故錯誤的可能是或者是,若錯誤,則在,上是減函數(shù),在在上是增函數(shù),則為函數(shù)的最小值,與矛盾,此時也錯誤,不滿足條件故錯誤的是,故選:【點睛】本題主要考查函數(shù)性質的綜合應用,結合對稱性和單調性的關系是解決本題的關鍵2B【解析】根據題意分析的圖像關于直線對稱,即可得到的單調區(qū)間,利用對稱性以及單調性即可得到的取值范圍。【詳解】根據題意,函數(shù) 滿足是偶函數(shù),則

7、函數(shù)的圖像關于直線對稱,若函數(shù)在上單調遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B【點睛】本題考查偶函數(shù)的性質,以及函數(shù)單調性的應用,有一定綜合性,屬于中檔題。3B【解析】先根據圖象求出函數(shù)的解析式,再由平移知識得到的解析式,然后分別找出和的等價條件,即可根據充分條件,必要條件的定義求出.【詳解】設,根據圖象可知,再由, 取,.將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,.,令,則,顯然,是的必要不充分條件.故選:B【點睛】本題主要考查利用圖象求正(余)弦型函數(shù)的解析式,三角函數(shù)的圖形變換, 二倍角公式的應用,充分條件,必要條件的定義的應用,意在考查學生

8、的數(shù)學運算能力和邏輯推理能力,屬于中檔題.4B【解析】根據等差數(shù)列的定義,線面關系,余弦函數(shù)以及基本不等式一一判斷即可;【詳解】解:已知函數(shù)是一次函數(shù),若數(shù)列的通項公式為,可得為一次項系數(shù)),則該數(shù)列是等差數(shù)列,故正確;若直線上有兩個不同的點到平面的距離相等,則與可以相交或平行,故錯誤;在中,而余弦函數(shù)在區(qū)間上單調遞減,故 “”可得“”,由“”可得“”,故“”是“”的充要條件,故錯誤;若,則,所以,當且僅當時取等號,故正確;綜上可得正確的有共2個;故選:B【點睛】本題考查命題的真假判斷,主要是正弦定理的運用和等比數(shù)列的求和公式、等差數(shù)列的定義和不等式的性質,考查運算能力和推理能力,屬于中檔題5

9、B【解析】利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對數(shù)運算性質比較a,c進而可得結論.【詳解】依題意,函數(shù)與函數(shù)關于直線對稱,則,即,又,所以,.故選:B.【點睛】本題主要考查對數(shù)、指數(shù)的大小比較,屬于基礎題.6C【解析】由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側棱長為,利用正弦定理求出底面三角形外接圓的半徑,根據三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側棱長為,如圖:由底面邊長可知,底面三角形的頂角為,由正弦定理可得,解得, 三棱柱

10、的兩底面中心連線的中點就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點睛】本題考查了多面體的內切球與外接球問題,由三視圖求幾何體的表面積,考查了學生的空間想象能力,屬于基礎題.7D【解析】根據題意得,設與共線的單位向量為,利用向量共線和單位向量模為1,列式求出即可得出答案.【詳解】因為,則,所以,設與共線的單位向量為,則,解得 或所以與共線的單位向量為或.故選:D.【點睛】本題考查向量的坐標運算以及共線定理和單位向量的定義.8D【解析】根據題意,分析該郵車到第站時,一共裝上的郵件和卸下的郵件數(shù)目,進而計算可得答案【詳解】解:根據題意,該郵車到第站時,一共裝上了件郵件,需

11、要卸下件郵件,則,故選:D【點睛】本題主要考查數(shù)列遞推公式的應用,屬于中檔題9A【解析】由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1再由球與圓柱體積公式求解【詳解】由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1則幾何體的體積為故選:【點睛】本題主要考查由三視圖求面積、體積,關鍵是由三視圖還原原幾何體,意在考查學生對這些知識的理解掌握水平10B【解析】解出,分別代入選項中 的值進行驗證.【詳解】解:,.當 時,,此時不成立.當 時,,此時成立,符合題意

12、.故選:B.【點睛】本題考查了不等式的解法,考查了集合的關系.11D【解析】由恒成立,等價于的圖像在的圖像的上方,然后作出兩個函數(shù)的圖像,利用數(shù)形結合的方法求解答案.【詳解】因為由恒成立,分別作出及的圖象,由圖知,當時,不符合題意,只須考慮的情形,當與圖象相切于時,由導數(shù)幾何意義,此時,故.故選:D【點睛】此題考查的是函數(shù)中恒成立問題,利用了數(shù)形結合的思想,屬于難題.12A【解析】分別代值計算可得,觀察可得數(shù)列是以3為周期的周期數(shù)列,問題得以解決.【詳解】解:,(),數(shù)列是以3為周期的周期數(shù)列,故選:A.【點睛】本題考查數(shù)列的周期性和運用:求數(shù)列中的項,考查運算能力,屬于基礎題.二、填空題:本

13、題共4小題,每小題5分,共20分。13【解析】由于偶次根式中被開方數(shù)非負,對數(shù)的真數(shù)要大于零,然后解不等式組可得答案.【詳解】解:由題意得,解得,所以,故答案為:【點睛】此題考查函數(shù)定義域的求法,屬于基礎題.14【解析】利用正弦定理邊化角可得,從而可得,進而求解.【詳解】由,由正弦定理可得,即,整理可得,又因為,所以,因為,所以,故答案為:【點睛】本題主要考查了正弦定理解三角形、兩角和的正弦公式,屬于基礎題.15【解析】求出點坐標,由于直線與直線垂直,得出直線的斜率為,再由點斜式寫出直線的方程.【詳解】由于直線可看成直線先繞點逆時針方向旋轉角,再繼續(xù)旋轉角得到,則直線與直線垂直,即直線的斜率為

14、所以直線的方程為,即故答案為:【點睛】本題主要考查了求直線的方程,涉及了求直線的交點以及直線與直線的位置關系,屬于中檔題.16-2【解析】可行域是如圖的菱形ABCD,代入計算,知為最小.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)(2)【解析】(1)根據題意即可寫出該批次產品長度誤差的絕對值的頻率分布列,再根據期望公式即可求出;(2)由(1)可知,任取一件產品是標準長度的概率為0.4,即可求出隨機抽取2件產品,都不是標準長度產品的概率,由對立事件的概率公式即可得到隨機抽取2件產品,至少有1件是標準長度產品的概率,判斷其是否符合生產要求;當不符合要求時,設生產一件產品

15、為標準長度的概率為,可根據上述方法求出,解,即可得出最小值.【詳解】(1)由柱狀圖,該批次產品長度誤差的絕對值的頻率分布列為下表:00.010.020.030.04頻率0.40.30.20.0750.025所以的數(shù)學期望的估計為.(2)由(1)可知任取一件產品是標準長度的概率為0.4,設至少有1件是標準長度產品為事件,則,故不符合概率不小于0.8的要求.設生產一件產品為標準長度的概率為,由題意,又,解得,所以符合要求時,生產一件產品為標準長度的概率的最小值為.【點睛】本題主要考查離散型隨機變量的期望的求法,相互獨立事件同時發(fā)生的概率公式的應用,對立事件的概率公式的應用,解題關鍵是對題意的理解,

16、意在考查學生的數(shù)學建模能力和數(shù)學運算能力,屬于基礎題18(1)見解析;(2)【解析】分析:(1)先構造函數(shù),再求導函數(shù),根據導函數(shù)不大于零得函數(shù)單調遞減,最后根據單調性證得不等式;(2)研究零點,等價研究的零點,先求導數(shù):,這里產生兩個討論點,一個是a與零,一個是x與2,當時,沒有零點;當時,先減后增,從而確定只有一個零點的必要條件,再利用零點存在定理確定條件的充分性,即得a的值.詳解:(1)當時,等價于設函數(shù),則當時,所以在單調遞減而,故當時,即(2)設函數(shù)在只有一個零點當且僅當在只有一個零點(i)當時,沒有零點;(ii)當時,當時,;當時,所以在單調遞減,在單調遞增故是在的最小值若,即,在

17、沒有零點;若,即,在只有一個零點;若,即,由于,所以在有一個零點,由(1)知,當時,所以故在有一個零點,因此在有兩個零點綜上,在只有一個零點時,點睛:利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)利用零點存在的判定定理構建不等式求解.(2)分離參數(shù)后轉化為函數(shù)的值域(最值)問題求解.(3)轉化為兩熟悉的函數(shù)圖象的上、下關系問題,從而構建不等式求解.19 【解析】討論和的情況,然后再分對稱軸和區(qū)間之間的關系,最后求出最小值【詳解】當時,它在上是減函數(shù)故函數(shù)的最小值為當時,函數(shù)的圖象思維對稱軸方程為當時,函數(shù)的最小值為當時,函數(shù)的最小值為當時,函數(shù)的最小值為綜上,【點睛】本題主要考查了二次函數(shù)在

18、閉區(qū)間上的最值,二次函數(shù)的性質的應用,體現(xiàn)了分類討論的數(shù)學思想,屬于中檔題。20(1);(2)最小值為,此時【解析】(1)消去曲線參數(shù)方程的參數(shù),求得曲線的普通方程.利用極坐標和直角坐標相互轉化公式,求得曲線的直角坐標方程.(2)設出的坐標,結合點到直線的距離公式以及三角函數(shù)最值的求法,求得的最小值及此時點的坐標.【詳解】(1)消去得,曲線的普通方程是:;把,代入得,曲線的直角坐標方程是(2)設,的最小值就是點到直線的最小距離.設在時,是最小值,此時,所以,所求最小值為,此時【點睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標方程轉化為直角坐標方程,考查利用圓錐曲線的參數(shù)求最值,屬于中檔題.21(1)(2)【解析】(1)由正弦定理將,轉化,即,由余弦定理求得, 再由平方關系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論