




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1 答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1幻方最早起源于我國,由正整數(shù)1,2,3,這個(gè)數(shù)填入方格中,使得每行、每列、每條對角線上的數(shù)的和
2、相等,這個(gè)正方形數(shù)陣就叫階幻方定義為階幻方對角線上所有數(shù)的和,如,則( )A55B500C505D50502把滿足條件(1),(2),使得的函數(shù)稱為“D函數(shù)”,下列函數(shù)是“D函數(shù)”的個(gè)數(shù)為( ) A1個(gè)B2個(gè)C3個(gè)D4個(gè)3設(shè)a=log73,c=30.7,則a,b,c的大小關(guān)系是()ABCD4若的展開式中的系數(shù)為150,則( )A20B15C10D255設(shè)曲線在點(diǎn)處的切線方程為,則( )A1B2C3D46已知盒中有3個(gè)紅球,3個(gè)黃球,3個(gè)白球,且每種顏色的三個(gè)球均按,編號,現(xiàn)從中摸出3個(gè)球(除顏色與編號外球沒有區(qū)別),則恰好不同時(shí)包含字母,的概率為( )ABCD7若與互為共軛復(fù)數(shù),則( )A0B
3、3C1D48已知,分別是三個(gè)內(nèi)角,的對邊,則( )ABCD9已知函數(shù),則的極大值點(diǎn)為( )ABCD10已知函數(shù),方程有四個(gè)不同的根,記最大的根的所有取值為集合,則“函數(shù)有兩個(gè)零點(diǎn)”是“”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件11我國古代數(shù)學(xué)著作九章算術(shù)有如下問題:“今有蒲生一日,長三尺莞生一日,長一尺蒲生日自半,莞生日自倍.問幾何日而長倍?”意思是:“今有蒲草第天長高尺,蕪草第天長高尺以后,蒲草每天長高前一天的一半,蕪草每天長高前一天的倍.問第幾天莞草是蒲草的二倍?”你認(rèn)為莞草是蒲草的二倍長所需要的天數(shù)是( )(結(jié)果采取“只入不舍”的原則取整數(shù),相關(guān)數(shù)據(jù):,)
4、ABCD12已知向量,且與的夾角為,則( )AB1C或1D或9二、填空題:本題共4小題,每小題5分,共20分。13六位同學(xué)坐在一排,現(xiàn)讓六位同學(xué)重新坐,恰有兩位同學(xué)坐自己原來的位置,則不同的坐法有_種(用數(shù)字回答).14已知雙曲線的一條漸近線方程為,則_15設(shè)數(shù)列為等差數(shù)列,其前項(xiàng)和為,已知,若對任意都有成立,則的值為_16在一次醫(yī)療救助活動中,需要從A醫(yī)院某科室的6名男醫(yī)生、4名女醫(yī)生中分別抽調(diào)3名男醫(yī)生、2名女醫(yī)生,且男醫(yī)生中唯一的主任醫(yī)師必須參加,則不同的選派案共有_種.(用數(shù)字作答)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)對于正整數(shù),如果個(gè)整數(shù)滿足,
5、且,則稱數(shù)組為的一個(gè)“正整數(shù)分拆”.記均為偶數(shù)的“正整數(shù)分拆”的個(gè)數(shù)為均為奇數(shù)的“正整數(shù)分拆”的個(gè)數(shù)為.()寫出整數(shù)4的所有“正整數(shù)分拆”;()對于給定的整數(shù),設(shè)是的一個(gè)“正整數(shù)分拆”,且,求的最大值;()對所有的正整數(shù),證明:;并求出使得等號成立的的值.(注:對于的兩個(gè)“正整數(shù)分拆”與,當(dāng)且僅當(dāng)且時(shí),稱這兩個(gè)“正整數(shù)分拆”是相同的.)18(12分)已知等腰梯形中(如圖1),為線段的中點(diǎn),、為線段上的點(diǎn),現(xiàn)將四邊形沿折起(如圖2)(1)求證:平面;(2)在圖2中,若,求直線與平面所成角的正弦值.19(12分)山東省2020年高考將實(shí)施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和
6、自主選擇的3門普通高中學(xué)業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數(shù)學(xué)、外語,自主選擇的3門普通高中學(xué)業(yè)水平等級考試科目是從物理、化學(xué)、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數(shù)、外三科各占150分,選考科目成績采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.根據(jù)高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為A、B+、B、C+、C、D+、D、E共8個(gè)等級。參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計(jì)入考生
7、總成績時(shí),將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級成績.舉例說明.某同學(xué)化學(xué)學(xué)科原始分為65分,該學(xué)科C+等級的原始分分布區(qū)間為5869,則該同學(xué)化學(xué)學(xué)科的原始成績屬C+等級.而C+等級的轉(zhuǎn)換分區(qū)間為6170,那么該同學(xué)化學(xué)學(xué)科的轉(zhuǎn)換分為:設(shè)該同學(xué)化學(xué)科的轉(zhuǎn)換等級分為x,69-6565-58=70-xx-61,求得x66.73.四舍五入后該同學(xué)化學(xué)學(xué)科賦分成績?yōu)?7.(1)某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六個(gè)選考科目進(jìn)行測試,
8、其中物理考試原始成績基本服從正態(tài)分布N(60,122).(i)若小明同學(xué)在這次考試中物理原始分為84分,等級為B+,其所在原始分分布區(qū)間為8293,求小明轉(zhuǎn)換后的物理成績;(ii)求物理原始分在區(qū)間(72,84)的人數(shù);(2)按高考改革方案,若從全省考生中隨機(jī)抽取4人,記X表示這4人中等級成績在區(qū)間61,80的人數(shù),求X的分布列和數(shù)學(xué)期望.(附:若隨機(jī)變量N(,2),則P-+=0.682,P-2+2=0.954,P-3+3=0.997)20(12分)已知.(1)解關(guān)于x的不等式:;(2)若的最小值為M,且,求證:.21(12分)如圖,在直角中,點(diǎn)在線段上.(1)若,求的長;(2)點(diǎn)是線段上一點(diǎn)
9、,且,求的值.22(10分)已知,分別是三個(gè)內(nèi)角,的對邊,(1)求;(2)若,求,參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【解析】因?yàn)榛梅降拿啃?、每列、每條對角線上的數(shù)的和相等,可得,即得解.【詳解】因?yàn)榛梅降拿啃?、每列、每條對角線上的數(shù)的和相等,所以階幻方對角線上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,于是故選:C【點(diǎn)睛】本題考查了數(shù)陣問題,考查了學(xué)生邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.2B【解析】滿足(1)(2)的函數(shù)是偶函數(shù)且值域關(guān)于原點(diǎn)對稱,分別對所給函數(shù)進(jìn)行驗(yàn)證.【詳解】滿足(1)(2
10、)的函數(shù)是偶函數(shù)且值域關(guān)于原點(diǎn)對稱,不滿足(2);不滿足(1);不滿足(2);均滿足(1)(2).故選:B.【點(diǎn)睛】本題考查新定義函數(shù)的問題,涉及到函數(shù)的性質(zhì),考查學(xué)生邏輯推理與分析能力,是一道容易題.3D【解析】,得解【詳解】,所以,故選D【點(diǎn)睛】比較不同數(shù)的大小,找中間量作比較是一種常見的方法4C【解析】通過二項(xiàng)式展開式的通項(xiàng)分析得到,即得解.【詳解】由已知得,故當(dāng)時(shí),于是有,則.故選:C【點(diǎn)睛】本題主要考查二項(xiàng)式展開式的通項(xiàng)和系數(shù)問題,意在考查學(xué)生對這些知識的理解掌握水平.5D【解析】利用導(dǎo)數(shù)的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因?yàn)?,且在點(diǎn)處的切線的斜率為3,所以,即.故
11、選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查運(yùn)算求解能力,是基礎(chǔ)題6B【解析】首先求出基本事件總數(shù),則事件“恰好不同時(shí)包含字母,”的對立事件為“取出的3個(gè)球的編號恰好為字母,”, 記事件“恰好不同時(shí)包含字母,”為,利用對立事件的概率公式計(jì)算可得;【詳解】解:從9個(gè)球中摸出3個(gè)球,則基本事件總數(shù)為(個(gè)),則事件“恰好不同時(shí)包含字母,”的對立事件為“取出的3個(gè)球的編號恰好為字母,”記事件“恰好不同時(shí)包含字母,”為,則.故選:B【點(diǎn)睛】本題考查了古典概型及其概率計(jì)算公式,考查了排列組合的知識,解答的關(guān)鍵在于正確理解題意,屬于基礎(chǔ)題7C【解析】計(jì)算,由共軛復(fù)數(shù)的概念解得即可.【詳解】,又由共軛復(fù)數(shù)概念得
12、:,.故選:C【點(diǎn)睛】本題主要考查了復(fù)數(shù)的運(yùn)算,共軛復(fù)數(shù)的概念.8C【解析】原式由正弦定理化簡得,由于,可求的值.【詳解】解:由及正弦定理得.因?yàn)椋源肷鲜交喌?由于,所以.又,故.故選:C.【點(diǎn)睛】本題主要考查正弦定理解三角形,三角函數(shù)恒等變換等基礎(chǔ)知識;考查運(yùn)算求解能力,推理論證能力,屬于中檔題.9A【解析】求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)數(shù)為零,根據(jù)函數(shù)單調(diào)性,求得極大值點(diǎn)即可.【詳解】因?yàn)椋士傻?,令,因?yàn)椋士傻没?,則在區(qū)間單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,故的極大值點(diǎn)為.故選:A.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的極值點(diǎn),屬基礎(chǔ)題.10A【解析】作出函數(shù)的圖象,得到,把函數(shù)有零點(diǎn)轉(zhuǎn)化為與
13、在(2,4上有交點(diǎn),利用導(dǎo)數(shù)求出切線斜率,即可求得的取值范圍,再根據(jù)充分、必要條件的定義即可判斷【詳解】作出函數(shù)的圖象如圖,由圖可知,函數(shù)有2個(gè)零點(diǎn),即有兩個(gè)不同的根,也就是與在上有2個(gè)交點(diǎn),則的最小值為;設(shè)過原點(diǎn)的直線與的切點(diǎn)為,斜率為,則切線方程為,把代入,可得,即,切線斜率為,k的取值范圍是,函數(shù)有兩個(gè)零點(diǎn)”是“”的充分不必要條件,故選A【點(diǎn)睛】本題主要考查了函數(shù)零點(diǎn)的判定,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,訓(xùn)練了利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,試題有一定的綜合性,屬于中檔題11C【解析】由題意可利用等比數(shù)列的求和公式得莞草與蒲草n天后長度,進(jìn)而可得:,解出即可得出【詳
14、解】由題意可得莞草與蒲草第n天的長度分別為 據(jù)題意得:, 解得2n12, n21故選:C【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題12C【解析】由題意利用兩個(gè)向量的數(shù)量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點(diǎn)睛】本題主要考查兩個(gè)向量的數(shù)量積的定義和公式,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13135【解析】根據(jù)題意先確定2個(gè)人位置不變,共有種選擇,再確定4個(gè)人坐4個(gè)位置,但是不能坐原來的位置,計(jì)算得到答案.【詳解】根據(jù)題意先確定2個(gè)人位置不變,共有種選擇.再確定4個(gè)人坐4個(gè)位置,但是不能坐原來的位置
15、,共有種選擇,故不同的坐法有.故答案為:.【點(diǎn)睛】本題考查了分步乘法原理,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.14【解析】根據(jù)雙曲線的標(biāo)準(zhǔn)方程寫出雙曲線的漸近線方程,結(jié)合題意可求得正實(shí)數(shù)的值.【詳解】雙曲線的漸近線方程為,由于該雙曲線的一條漸近線方程為,解得.故答案為:.【點(diǎn)睛】本題考查利用雙曲線的漸近線方程求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.15【解析】由已知條件得出關(guān)于首項(xiàng)和公差的方程組,解出這兩個(gè)量,計(jì)算出,利用二次函數(shù)的基本性質(zhì)求出的最大值及其對應(yīng)的值,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由,解得,.所以,當(dāng)時(shí),取得最大值,對任意都有成立,則為數(shù)列的最大值,因此,.故答案為:.【點(diǎn)睛】本
16、題考查等差數(shù)列前項(xiàng)和最值的計(jì)算,一般利用二次函數(shù)的基本性質(zhì)求解,考查計(jì)算能力,屬于中等題.16【解析】首先選派男醫(yī)生中唯一的主任醫(yī)師,由題意利用排列組合公式即可確定不同的選派案方法種數(shù).【詳解】首先選派男醫(yī)生中唯一的主任醫(yī)師,然后從名男醫(yī)生、名女醫(yī)生中分別抽調(diào)2名男醫(yī)生、名女醫(yī)生,故選派的方法為:.故答案為【點(diǎn)睛】解排列組合問題要遵循兩個(gè)原則:一是按元素(或位置)的性質(zhì)進(jìn)行分類;二是按事情發(fā)生的過程進(jìn)行分步具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17 () ,;() 為偶
17、數(shù)時(shí),為奇數(shù)時(shí),;()證明見解析,【解析】()根據(jù)題意直接寫出答案.()討論當(dāng)為偶數(shù)時(shí),最大為,當(dāng)為奇數(shù)時(shí),最大為,得到答案.() 討論當(dāng)為奇數(shù)時(shí),至少存在一個(gè)全為1的拆分,故,當(dāng)為偶數(shù)時(shí), 根據(jù)對應(yīng)關(guān)系得到,再計(jì)算,得到答案.【詳解】()整數(shù)4的所有“正整數(shù)分拆”為:,.()當(dāng)為偶數(shù)時(shí),時(shí),最大為;當(dāng)為奇數(shù)時(shí),時(shí),最大為;綜上所述:為偶數(shù),最大為,為奇數(shù)時(shí),最大為.()當(dāng)為奇數(shù)時(shí),至少存在一個(gè)全為1的拆分,故;當(dāng)為偶數(shù)時(shí),設(shè)是每個(gè)數(shù)均為偶數(shù)的“正整數(shù)分拆”,則它至少對應(yīng)了和的均為奇數(shù)的“正整數(shù)分拆”,故.綜上所述:.當(dāng)時(shí),偶數(shù)“正整數(shù)分拆”為,奇數(shù)“正整數(shù)分拆”為,;當(dāng)時(shí),偶數(shù)“正整數(shù)分拆”
18、為,奇數(shù)“正整數(shù)分拆”為,故;當(dāng)時(shí),對于偶數(shù)“正整數(shù)分拆”,除了各項(xiàng)不全為的奇數(shù)拆分外,至少多出一項(xiàng)各項(xiàng)均為的“正整數(shù)分拆”,故.綜上所述:使成立的為:或.【點(diǎn)睛】本土考查了數(shù)列的新定義問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.18(1)見解析;(2).【解析】(1)先連接,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;(2)在圖2中,過點(diǎn)作,垂足為,連接,證明平面平面,得到點(diǎn)在底面上的投影必落在直線上,記為點(diǎn)在底面上的投影,連接,得出即是直線與平面所成角,再由題中數(shù)據(jù)求解,即可得出結(jié)果.【詳解】(1)連接,因?yàn)榈妊菪沃校ㄈ鐖D1),所以與平行且相等,即四邊形為平行四邊形;所以;又為線段的中點(diǎn),
19、為中點(diǎn),易得:四邊形也為平行四邊形,所以;將四邊形沿折起后,平行關(guān)系沒有變化,仍有:,且,所以翻折后四邊形也為平行四邊形;故;因?yàn)槠矫?,平面,所以平面;?)在圖2中,過點(diǎn)作,垂足為,連接,因?yàn)?,翻折前梯形的高為,所以,則,;所以;又,所以,即,所以;又,且平面,平面,所以平面;因此,平面平面;所以點(diǎn)在底面上的投影必落在直線上;記為點(diǎn)在底面上的投影,連接,則平面;所以即是直線與平面所成角,因?yàn)椋?,因此,故;因?yàn)?,所以,因此,故,所?即直線與平面所成角的正弦值為.【點(diǎn)睛】本題主要考查證明線面平行,以及求直線與平面所成的角,熟記線面平行的判定定理,以及線面角的求法即可,屬于??碱}型.19 (
20、1)(i)83.;(ii)272.(2)見解析.【解析】(1)根據(jù)原始分?jǐn)?shù)分布區(qū)間及轉(zhuǎn)換分區(qū)間,結(jié)合所給示例,即可求得小明轉(zhuǎn)換后的物理成績;根據(jù)正態(tài)分布滿足N60,122,結(jié)合正態(tài)分布的對稱性即可求得72,84內(nèi)的概率,根據(jù)總?cè)藬?shù)即可求得在該區(qū)間的人數(shù)。(2)根據(jù)各等級人數(shù)所占比例可知在區(qū)間61,80內(nèi)的概率為25,由二項(xiàng)分布即可求得X的分布列及各情況下的概率,結(jié)合數(shù)學(xué)期望的公式即可求解。【詳解】(1)(i)設(shè)小明轉(zhuǎn)換后的物理等級分為x,93-8484-82=90-xx-81,求得x82.64.小明轉(zhuǎn)換后的物理成績?yōu)?3分;(ii)因?yàn)槲锢砜荚囋挤只痉恼龖B(tài)分布N60,122,所以P(7284)=P(6084)-P(6072)=12P(3684)-12P(4872)=120.954-0.682=0.136.所以物理原始分在區(qū)間72,84的人數(shù)為20000.136=272(人);(2)由題意得,隨機(jī)抽取1人,其等級成績在區(qū)間61,80內(nèi)的概率為25,隨機(jī)抽取4人,則XB4,25.PX=0=354=81625,PX=1=C4125353=216625,PX=2=C42252352=216625,PX=3=C43253351=96625
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 分配生考試題及答案
- 2024-2025學(xué)年高中數(shù)學(xué)第一講坐標(biāo)系三簡單曲線的極坐標(biāo)方程1圓的極坐標(biāo)方程講義含解析新人教A版選修4-4
- 四年級數(shù)學(xué)下冊3.1折線統(tǒng)計(jì)圖的認(rèn)識教案3滬教版
- 四年級數(shù)學(xué)下冊1.2整數(shù)的運(yùn)算性質(zhì)教案4滬教版
- 激光技術(shù)在新材料研發(fā)中的應(yīng)用案例研究試題及答案
- 藥物制造工藝基礎(chǔ)知識試題及答案
- 育嬰師考試復(fù)習(xí)中不可忽視的環(huán)節(jié)試題及答案
- 藥劑師在公共衛(wèi)生中的重要性試題及答案
- 文化產(chǎn)業(yè)管理考試中與經(jīng)濟(jì)發(fā)展的關(guān)聯(lián)試題及答案
- 色彩環(huán)境測試題及答案
- 110kV線路鐵塔組立專項(xiàng)施工方案
- 2024無障礙設(shè)施行業(yè)趨勢分析
- 中考總復(fù)習(xí):無刻度直尺作圖2
- 第5課《弘揚(yáng)勞動精神勞模精神工匠精神》第2框《踐行勞動精神勞模精神工匠精神》-【中職專用】《職業(yè)道德與法治》同步課堂課件
- 小米汽車發(fā)布會
- 學(xué)前教育實(shí)習(xí)報(bào)告范文2000字2篇
- 2024年河北省專升本考試生理學(xué)康復(fù)治療學(xué)專業(yè)測試題含解析
- 電商用戶畫像構(gòu)建與精準(zhǔn)營銷報(bào)告
- 2023-2024學(xué)年七年級生物冀少版下冊期末測試卷(一)
- TL-PMM180超低煙塵使用及維護(hù)培訓(xùn)
- 能源托管項(xiàng)目解決方案
評論
0/150
提交評論