![高中數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié) (2)_第1頁(yè)](http://file4.renrendoc.com/view/2c5a8ca3522294f405e4ea3ba1458a6f/2c5a8ca3522294f405e4ea3ba1458a6f1.gif)
![高中數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié) (2)_第2頁(yè)](http://file4.renrendoc.com/view/2c5a8ca3522294f405e4ea3ba1458a6f/2c5a8ca3522294f405e4ea3ba1458a6f2.gif)
![高中數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié) (2)_第3頁(yè)](http://file4.renrendoc.com/view/2c5a8ca3522294f405e4ea3ba1458a6f/2c5a8ca3522294f405e4ea3ba1458a6f3.gif)
![高中數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié) (2)_第4頁(yè)](http://file4.renrendoc.com/view/2c5a8ca3522294f405e4ea3ba1458a6f/2c5a8ca3522294f405e4ea3ba1458a6f4.gif)
![高中數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié) (2)_第5頁(yè)](http://file4.renrendoc.com/view/2c5a8ca3522294f405e4ea3ba1458a6f/2c5a8ca3522294f405e4ea3ba1458a6f5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、高中數(shù)學(xué)(必修)知識(shí)點(diǎn)總結(jié)(兩套)目 錄TOC o 1-3 h z uHYPERLINK l _Toc268687626目錄 PAGEREF _Toc268687626 h 1HYPERLINK l _Toc268687627高一數(shù)學(xué)必修1 PAGEREF _Toc268687627 h 3HYPERLINK l _Toc268687628集合 PAGEREF _Toc268687628 h 3HYPERLINK l _Toc268687629函數(shù) PAGEREF _Toc268687629 h 4HYPERLINK l _Toc268687630函數(shù)題型及常用方法與結(jié)論 PAGEREF _T
2、oc268687630 h 4HYPERLINK l _Toc268687631高中數(shù)學(xué)必修2 PAGEREF _Toc268687631 h 9HYPERLINK l _Toc268687632第一章空間幾何體 PAGEREF _Toc268687632 h 9HYPERLINK l _Toc268687633第二章直線與平面的位置關(guān)系 PAGEREF _Toc268687633 h 9HYPERLINK l _Toc268687634第三章直線與方程 PAGEREF _Toc268687634 h 13HYPERLINK l _Toc268687635第四章圓與方程 PAGEREF _To
3、c268687635 h 15HYPERLINK l _Toc268687636高中數(shù)學(xué)必修3 PAGEREF _Toc268687636 h 18HYPERLINK l _Toc268687637第一章算法初步 PAGEREF _Toc268687637 h 18HYPERLINK l _Toc268687638第二章統(tǒng)計(jì) PAGEREF _Toc268687638 h 24HYPERLINK l _Toc268687639第三章概率 PAGEREF _Toc268687639 h 27HYPERLINK l _Toc268687640高中數(shù)學(xué)必修4 PAGEREF _Toc26868764
4、0 h 30HYPERLINK l _Toc268687641第一章三角函數(shù) PAGEREF _Toc268687641 h 30HYPERLINK l _Toc268687642第二章平面向量 PAGEREF _Toc268687642 h 32HYPERLINK l _Toc268687643第三章三角恒等變換 PAGEREF _Toc268687643 h 34HYPERLINK l _Toc268687644高中數(shù)學(xué)必修5 PAGEREF _Toc268687644 h 37HYPERLINK l _Toc268687645必修1數(shù)學(xué)知識(shí)點(diǎn) PAGEREF _Toc268687645
5、h 41HYPERLINK l _Toc268687646第一章、集合與函數(shù)概念 PAGEREF _Toc268687646 h 41HYPERLINK l _Toc268687647第二章、基本初等函數(shù)() PAGEREF _Toc268687647 h 42HYPERLINK l _Toc268687648第三章、函數(shù)的應(yīng)用 PAGEREF _Toc268687648 h 43HYPERLINK l _Toc268687649必修2數(shù)學(xué)知識(shí)點(diǎn) PAGEREF _Toc268687649 h 44HYPERLINK l _Toc268687650第一章空間幾何體 PAGEREF _Toc26
6、8687650 h 44HYPERLINK l _Toc268687651第二章:點(diǎn)、直線、平面之間的位置關(guān)系 PAGEREF _Toc268687651 h 45HYPERLINK l _Toc268687652第三章:直線與方程 PAGEREF _Toc268687652 h 45HYPERLINK l _Toc268687653第四章:圓與方程 PAGEREF _Toc268687653 h 46HYPERLINK l _Toc268687654必修3數(shù)學(xué)知識(shí)點(diǎn) PAGEREF _Toc268687654 h 47HYPERLINK l _Toc268687655第一章:算法 PAGER
7、EF _Toc268687655 h 47HYPERLINK l _Toc268687656第二章:統(tǒng)計(jì) PAGEREF _Toc268687656 h 47HYPERLINK l _Toc268687657第三章:概率 PAGEREF _Toc268687657 h 48HYPERLINK l _Toc268687658必修4數(shù)學(xué)知識(shí)點(diǎn) PAGEREF _Toc268687658 h 49HYPERLINK l _Toc268687659第一章、三角函數(shù) PAGEREF _Toc268687659 h 49HYPERLINK l _Toc268687660第二章、平面向量 PAGEREF _
8、Toc268687660 h 52HYPERLINK l _Toc268687661第三章、三角恒等變換 PAGEREF _Toc268687661 h 54HYPERLINK l _Toc268687662必修5數(shù)學(xué)知識(shí)點(diǎn) PAGEREF _Toc268687662 h 55HYPERLINK l _Toc268687663第一章:解三角形 PAGEREF _Toc268687663 h 55HYPERLINK l _Toc268687664第二章:數(shù)列 PAGEREF _Toc268687664 h 55HYPERLINK l _Toc268687665第三章:不等式 PAGEREF _T
9、oc268687665 h 56高一數(shù)學(xué)必修1集合函數(shù)附:函數(shù)題型及常用方法與結(jié)論一、函數(shù)的定義域的常用求法:1、分式的分母不等于零;2、偶次方根的被開方數(shù)大于等于零;3、對(duì)數(shù)的真數(shù)大于零;4、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)大于零且不等于1;5、三角函數(shù)正切函數(shù)中;余切函數(shù)中;6、如果函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。二、函數(shù)的解析式的常用求法:1、定義法;2、換元法;3、待定系數(shù)法;4、函數(shù)方程法;5、參數(shù)法;6、配方法三、函數(shù)的值域的常用求法:1、換元法;2、配方法;3、判別式法;4、幾何法;5、不等式法;6、單調(diào)性法;7、直接法四、函數(shù)的最值的常用求法: 1、
10、配方法;2、換元法;3、不等式法;4、幾何法;5、單調(diào)性法五、函數(shù)單調(diào)性的常用結(jié)論:1、若均為某區(qū)間上的增(減)函數(shù),則在這個(gè)區(qū)間上也為增(減)函數(shù)2、若為增(減)函數(shù),則為減(增)函數(shù)3、若與的單調(diào)性相同,則是增函數(shù);若與的單調(diào)性不同,則是減函數(shù)。4、奇函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相反。5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。六、函數(shù)奇偶性的常用結(jié)論:1、如果一個(gè)奇函數(shù)在處有定義,則,如果一個(gè)函數(shù)既是奇函數(shù)又是偶函數(shù),則(反之不成立)2、兩個(gè)奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。3、一個(gè)奇函數(shù)與一個(gè)偶
11、函數(shù)的積(商)為奇函數(shù)。4、兩個(gè)函數(shù)和復(fù)合而成的函數(shù),只要其中有一個(gè)是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個(gè)函數(shù)都是奇函數(shù)時(shí),該復(fù)合函數(shù)是奇函數(shù)。5、若函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,則可以表示為,該式的特點(diǎn)是:右端為一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和。表1指數(shù)函數(shù)對(duì)數(shù)數(shù)函數(shù)定義域值域圖象性質(zhì)過定點(diǎn)過定點(diǎn)減函數(shù)增函數(shù)減函數(shù)增函數(shù)表2冪函數(shù)奇函數(shù)偶函數(shù)第一象限性質(zhì)減函數(shù)增函數(shù)過定點(diǎn)高中數(shù)學(xué)必修2第一章空間幾何體1.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征1.2空間幾何體的三視圖和直觀圖1 三視圖:正視圖:從前往后側(cè)視圖:從左往右俯視圖:從上往下2 畫三視圖的原則:長(zhǎng)對(duì)齊、高對(duì)齊、寬相等3直觀圖:斜二測(cè)畫法4斜二測(cè)畫法的步
12、驟:(1).平行于坐標(biāo)軸的線依然平行于坐標(biāo)軸;(2).平行于y軸的線長(zhǎng)度變半,平行于x,z軸的線長(zhǎng)度不變;(3).畫法要寫好。5 用斜二測(cè)畫法畫出長(zhǎng)方體的步驟:(1)畫軸(2)畫底面(3)畫側(cè)棱(4)成圖1.3空間幾何體的表面積與體積(一 )空間幾何體的表面積1棱柱、棱錐的表面積: 各個(gè)面面積之和2 圓柱的表面積 3 圓錐的表面積4 圓臺(tái)的表面積5 球的表面積(二)空間幾何體的體積1柱體的體積2錐體的體積3臺(tái)體的體積4球體的體積第二章直線與平面的位置關(guān)系2.1空間點(diǎn)、直線、平面之間的位置關(guān)系2.1.11 平面含義:平面是無限延展的2 平面的畫法及表示DCBA(1)平面的畫法:水平放置的平面通常
13、畫成一個(gè)平行四邊形,銳角畫成450,且橫邊畫成鄰邊的2倍長(zhǎng)(如圖)(2)平面通常用希臘字母、等表示,如平面、平面等,也可以用表示平面的平行四邊形的四個(gè)頂點(diǎn)或者相對(duì)的兩個(gè)頂點(diǎn)的大寫字母來表示,如平面AC、平面ABCD等。3 三個(gè)公理:(1)公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)符號(hào)表示為L(zhǎng)AALBL = L AB公理1作用:判斷直線是否在平面內(nèi)CBA(2)公理2:過不在一條直線上的三點(diǎn),有且只有一個(gè)平面。符號(hào)表示為:A、B、C三點(diǎn)不共線 = 有且只有一個(gè)平面,使A、B、C。公理2作用:確定一個(gè)平面的依據(jù)。PL(3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只
14、有一條過該點(diǎn)的公共直線。符號(hào)表示為:P =L,且PL公理3作用:判定兩個(gè)平面是否相交的依據(jù)2.1.2 空間中直線與直線之間的位置關(guān)系1 空間的兩條直線有如下三種關(guān)系:共面直線 相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn)。2 公理4:平行于同一條直線的兩條直線互相平行。符號(hào)表示為:設(shè)a、b、c是三條直線=acabcb強(qiáng)調(diào):公理4實(shí)質(zhì)上是說平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都適用。公理4作用:判斷空間兩條直線平行的依據(jù)。3 等角定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)4 注意點(diǎn): a與b所成的角
15、的大小只由a、b的相互位置來確定,與O的選擇無關(guān),為了簡(jiǎn)便,點(diǎn)O一般取在兩直線中的一條上; 兩條異面直線所成的角(0, ); 當(dāng)兩條異面直線所成的角是直角時(shí),我們就說這兩條異面直線互相垂直,記作ab; 兩條直線互相垂直,有共面垂直與異面垂直兩種情形; 計(jì)算中,通常把兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線所成的角。2.1.3 2.1.4 空間中直線與平面、平面與平面之間的位置關(guān)系1、直線與平面有三種位置關(guān)系:(1)直線在平面內(nèi) 有無數(shù)個(gè)公共點(diǎn)(2)直線與平面相交 有且只有一個(gè)公共點(diǎn)(3)直線在平面平行 沒有公共點(diǎn)指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用a 來表示a a=A a2.
16、2.直線、平面平行的判定及其性質(zhì)2.2.1 直線與平面平行的判定1、直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。簡(jiǎn)記為:線線平行,則線面平行。符號(hào)表示:a b = aab2.2.2 平面與平面平行的判定1、兩個(gè)平面平行的判定定理:一個(gè)平面內(nèi)的兩條交直線與另一個(gè)平面平行,則這兩個(gè)平面平行。符號(hào)表示:a b ab = P ab2、判斷兩平面平行的方法有三種:(1)用定義;(2)判定定理;(3)垂直于同一條直線的兩個(gè)平面平行。2.2.3 2.2.4直線與平面、平面與平面平行的性質(zhì)1、定理:一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線
17、平行。簡(jiǎn)記為:線面平行則線線平行。符號(hào)表示:aa ab= b作用:利用該定理可解決直線間的平行問題。2、定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。符號(hào)表示:= a ab = b作用:可以由平面與平面平行得出直線與直線平行2.3直線、平面垂直的判定及其性質(zhì)2.3.1直線與平面垂直的判定1、定義如果直線L與平面內(nèi)的任意一條直線都垂直,我們就說直線L與平面互相垂直,記作L,直線L叫做平面的垂線,平面叫做直線L的垂面。如圖,直線與平面垂直時(shí),它們唯一公共點(diǎn)P叫做垂足。 L p2、判定定理:一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。注意點(diǎn): a)定理中的“兩條相交
18、直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想。2.3.2平面與平面垂直的判定1、二面角的概念:表示從空間一直線出發(fā)的兩個(gè)半平面所組成的圖形A 梭 l B2、二面角的記法:二面角-l-或-AB-3、兩個(gè)平面互相垂直的判定定理:一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直。2.3.32.3.4直線與平面、平面與平面垂直的性質(zhì)1、定理:垂直于同一個(gè)平面的兩條直線平行。2性質(zhì)定理: 兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直。本章知識(shí)結(jié)構(gòu)框圖平面(公理1、公理2、公理3、公理4)空間直線、平面的位置關(guān)系平面與平面的位置關(guān)系直線與平面的位
19、置關(guān)系直線與直線的位置關(guān)系第三章直線與方程3.1直線的傾斜角和斜率3.1傾斜角和斜率1、直線的傾斜角的概念:當(dāng)直線l與x軸相交時(shí), 取x軸作為基準(zhǔn), x軸正向與直線l向上方向之間所成的角叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時(shí), 規(guī)定= 0.2、 傾斜角的取值范圍: 0180.當(dāng)直線l與x軸垂直時(shí), = 90.3、直線的斜率:一條直線的傾斜角(90)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是 k = tan當(dāng)直線l與x軸平行或重合時(shí), =0, k = tan0=0;當(dāng)直線l與x軸垂直時(shí), = 90, k 不存在.由此可知, 一條直線l的傾斜角一定存在,但是斜率k不
20、一定存在.4、 直線的斜率公式:給定兩點(diǎn)P1(x1,y1),P2(x2,y2),x1x2,用兩點(diǎn)的坐標(biāo)來表示直線P1P2的斜率:斜率公式: 3.1.2兩條直線的平行與垂直1、兩條直線都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行,即注意: 上面的等價(jià)是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個(gè)前提,結(jié)論并不成立即如果k1=k2, 那么一定有L1L22、兩條直線都有斜率,如果它們互相垂直,那么它們的斜率互為負(fù)倒數(shù);反之,如果它們的斜率互為負(fù)倒數(shù),那么它們互相垂直,即3.2.1 直線的點(diǎn)斜式方程1、 直線的點(diǎn)斜式方程:直線經(jīng)過點(diǎn),且斜率為2、
21、直線的斜截式方程:已知直線的斜率為,且與軸的交點(diǎn)為3.2.2 直線的兩點(diǎn)式方程1、直線的兩點(diǎn)式方程:已知兩點(diǎn)其中2、直線的截距式方程:已知直線與軸的交點(diǎn)為A,與軸的交點(diǎn)為B,其中3.2.3 直線的一般式方程1、直線的一般式方程:關(guān)于的二元一次方程(A,B不同時(shí)為0)2、各種直線方程之間的互化。3.3直線的交點(diǎn)坐標(biāo)與距離公式3.3.1兩直線的交點(diǎn)坐標(biāo)1、給出例題:兩直線交點(diǎn)坐標(biāo)L1 :3x+4y-2=0L1:2x+y +2=0解:解方程組得 x=-2,y=2所以L1與L2的交點(diǎn)坐標(biāo)為M(-2,2)兩點(diǎn)間距離兩點(diǎn)間的距離公式點(diǎn)到直線的距離公式1點(diǎn)到直線距離公式:點(diǎn)到直線的距離為:2、兩平行線間的距
22、離公式:已知兩條平行線直線和的一般式方程為:,:,則與的距離為第四章圓與方程4.1.1 圓的標(biāo)準(zhǔn)方程1、圓的標(biāo)準(zhǔn)方程:圓心為A(a,b),半徑為r的圓的方程2、點(diǎn)與圓的關(guān)系的判斷方法:(1),點(diǎn)在圓外(2)=,點(diǎn)在圓上(3),點(diǎn)在圓內(nèi)4.1.2 圓的一般方程1、圓的一般方程:2、圓的一般方程的特點(diǎn): (1)x2和y2的系數(shù)相同,不等于0沒有xy這樣的二次項(xiàng) (2)圓的一般方程中有三個(gè)特定的系數(shù)D、E、F,因之只要求出這三個(gè)系數(shù),圓的方程就確定了(3)、與圓的標(biāo)準(zhǔn)方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標(biāo)準(zhǔn)方程則指出了圓心坐標(biāo)與半徑大小,幾何特征較明顯。4.2.1 圓與圓的位置
23、關(guān)系1、用點(diǎn)到直線的距離來判斷直線與圓的位置關(guān)系設(shè)直線:,圓:,圓的半徑為,圓心到直線的距離為,則判別直線與圓的位置關(guān)系的依據(jù)有以下幾點(diǎn):(1)當(dāng)時(shí),直線與圓相離;(2)當(dāng)時(shí),直線與圓相切;(3)當(dāng)時(shí),直線與圓相交;4.2.2 圓與圓的位置關(guān)系兩圓的位置關(guān)系設(shè)兩圓的連心線長(zhǎng)為,則判別圓與圓的位置關(guān)系的依據(jù)有以下幾點(diǎn):(1)當(dāng)時(shí),圓與圓相離;(2)當(dāng)時(shí),圓與圓外切;(3)當(dāng)時(shí),圓與圓相交;(4)當(dāng)時(shí),圓與圓內(nèi)切;(5)當(dāng)時(shí),圓與圓內(nèi)含;4.2.3 直線與圓的方程的應(yīng)用1、利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;2、過程與方法用坐標(biāo)法解決幾何問題的步驟:第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和
24、方程表示問題中的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論4.3.1空間直角坐標(biāo)系1、點(diǎn)M對(duì)應(yīng)著唯一確定的有序?qū)崝?shù)組,、分別是P、Q、R在、軸上的坐標(biāo)2、有序?qū)崝?shù)組,對(duì)應(yīng)著空間直角坐標(biāo)系中的一點(diǎn)3、空間中任意點(diǎn)M的坐標(biāo)都可以用有序?qū)崝?shù)組來表示,該數(shù)組叫做點(diǎn)M在此空間直角坐標(biāo)系中的坐標(biāo),記M,叫做點(diǎn)M的橫坐標(biāo),叫做點(diǎn)M的縱坐標(biāo),叫做點(diǎn)M的豎坐標(biāo)。4.3.2空間兩點(diǎn)間的距離公式1、空間中任意一點(diǎn)到點(diǎn)之間的距離公式高中數(shù)學(xué)必修3第一章算法初步算法的概念1、算法概念:在數(shù)學(xué)上,現(xiàn)代意義上的“算法”通常是指可以用計(jì)算機(jī)來解決的某一
25、類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.2. 算法的特點(diǎn):(1)有限性:一個(gè)算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.(2)確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.(3)順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個(gè)步驟只能有一個(gè)確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進(jìn)行下一步,并且每一步都準(zhǔn)確無誤,才能完成問題.(4)不唯一性:求解某一個(gè)問題的解法不一定是唯一的,對(duì)于一個(gè)問題可以有不同的算法.(5)普遍性:很多具體的問題,都可以設(shè)計(jì)合理的算法去解決,
26、如心算、計(jì)算器計(jì)算都要經(jīng)過有限、事先設(shè)計(jì)好的步驟加以解決. 程序框圖1、程序框圖基本概念:(一)程序構(gòu)圖的概念:程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形。一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明。(二)構(gòu)成程序框的圖形符號(hào)及其作用程序框名稱功能起止框表示一個(gè)算法的起始和結(jié)束,是任何流程圖不可少的。輸入、輸出框表示一個(gè)算法輸入和輸出的信息,可用在算法中任何需要輸入、輸出的位置。處理框賦值、計(jì)算,算法中處理數(shù)據(jù)需要的算式、公式等分別寫在不同的用以處理數(shù)據(jù)的處理框內(nèi)。判斷框判斷某一條件是否成立,成立時(shí)在出口處標(biāo)
27、明“是”或“Y”;不成立時(shí)標(biāo)明“否”或“N”。學(xué)習(xí)這部分知識(shí)的時(shí)候,要掌握各個(gè)圖形的形狀、作用及使用規(guī)則,畫程序框圖的規(guī)則如下:1、使用標(biāo)準(zhǔn)的圖形符號(hào)。2、框圖一般按從上到下、從左到右的方向畫。3、除判斷框外,大多數(shù)流程圖符號(hào)只有一個(gè)進(jìn)入點(diǎn)和一個(gè)退出點(diǎn)。判斷框具有超過一個(gè)退出點(diǎn)的唯一符號(hào)。4、判斷框分兩大類,一類判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個(gè)結(jié)果;另一類是多分支判斷,有幾種不同的結(jié)果。5、在圖形符號(hào)內(nèi)描述的語言要非常簡(jiǎn)練清楚。(三)、算法的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。1、順序結(jié)構(gòu):順序結(jié)構(gòu)是最簡(jiǎn)單的算法結(jié)構(gòu),語句與語句之間,框與框之間是按從上到下的順序進(jìn)
28、行的,它是由若干個(gè)依次執(zhí)行的處理步驟組成的,它是任何一個(gè)算法都離不開的一種基本算法結(jié)構(gòu)。順序結(jié)構(gòu)在程序框圖中的體現(xiàn)就是用流程線將程序框自上而下地連接起來,按順序執(zhí)行算法步驟。如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)AB行B框所指定的操作。2、條件結(jié)構(gòu):條件結(jié)構(gòu)是指在算法中通過對(duì)條件的判斷根據(jù)條件是否成立而選擇不同流向的算法結(jié)構(gòu)。條件P是否成立而選擇執(zhí)行A框或B框。無論P(yáng)條件是否成立,只能執(zhí)行A框或B框之一,不可能同時(shí)執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。一個(gè)判斷結(jié)構(gòu)可以有多個(gè)判斷框。3、循環(huán)結(jié)構(gòu):在一些算法中,經(jīng)常會(huì)出現(xiàn)從某處開始,按照一定條件,反復(fù)
29、執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。循環(huán)結(jié)構(gòu)又稱重復(fù)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類:(1)、一類是當(dāng)型循環(huán)結(jié)構(gòu),如下左圖所示,它的功能是當(dāng)給定的條件P成立時(shí),執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復(fù)執(zhí)行A框,直到某一次條件P不成立為止,此時(shí)不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。(2)、另一類是直到型循環(huán)結(jié)構(gòu),如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時(shí)不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。A成立不成立P不成立P成立Ap當(dāng)型循
30、環(huán)結(jié)構(gòu) 直到型循環(huán)結(jié)構(gòu)注意:1循環(huán)結(jié)構(gòu)要在某個(gè)條件下終止循環(huán),這就需要條件結(jié)構(gòu)來判斷。因此,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu),但不允許“死循環(huán)”。2在循環(huán)結(jié)構(gòu)中都有一個(gè)計(jì)數(shù)變量和累加變量。計(jì)數(shù)變量用于記錄循環(huán)次數(shù),累加變量用于輸出結(jié)果。計(jì)數(shù)變量和累加變量一般是同步執(zhí)行的,累加一次,計(jì)數(shù)一次。輸入、輸出語句和賦值語句1、輸入語句圖形計(jì)算器格式INPUT“提示內(nèi)容”;變量INPUT “提示內(nèi)容”,變量(1)輸入語句的一般格式(2)輸入語句的作用是實(shí)現(xiàn)算法的輸入信息功能;(3)“提示內(nèi)容”提示用戶輸入什么樣的信息,變量是指程序在運(yùn)行時(shí)其值是可以變化的量;(4)輸入語句要求輸入的值只能是具體的常數(shù),不能是函
31、數(shù)、變量或表達(dá)式;(5)提示內(nèi)容與變量之間用分號(hào)“;”隔開,若輸入多個(gè)變量,變量與變量之間用逗號(hào)“,”隔開。2、輸出語句PRINT“提示內(nèi)容”;表達(dá)式圖形計(jì)算器格式Disp “提示內(nèi)容”,變量(1)輸出語句的一般格式(2)輸出語句的作用是實(shí)現(xiàn)算法的輸出結(jié)果功能;(3)“提示內(nèi)容”提示用戶輸入什么樣的信息,表達(dá)式是指程序要輸出的數(shù)據(jù);(4)輸出語句可以輸出常量、變量或表達(dá)式的值以及字符。3、賦值語句變量表達(dá)式圖形計(jì)算器格式表達(dá)式變量(1)賦值語句的一般格式(2)賦值語句的作用是將表達(dá)式所代表的值賦給變量;(3)賦值語句中的“”稱作賦值號(hào),與數(shù)學(xué)中的等號(hào)的意義是不同的。賦值號(hào)的左右兩邊不能對(duì)換,它
32、將賦值號(hào)右邊的表達(dá)式的值賦給賦值號(hào)左邊的變量;(4)賦值語句左邊只能是變量名字,而不是表達(dá)式,右邊表達(dá)式可以是一個(gè)數(shù)據(jù)、常量或算式;(5)對(duì)于一個(gè)變量可以多次賦值。注意:賦值號(hào)左邊只能是變量名字,而不能是表達(dá)式。如:2=X是錯(cuò)誤的。賦值號(hào)左右不能對(duì)換。如“A=B”“B=A”的含義運(yùn)行結(jié)果是不同的。不能利用賦值語句進(jìn)行代數(shù)式的演算。(如化簡(jiǎn)、因式分解、解方程等)賦值號(hào)“=”與數(shù)學(xué)中的等號(hào)意義不同。122條件語句1、條件語句的一般格式有兩種:(1)IFTHENELSE語句;(2)IFTHEN語句。2、IFTHENELSE語句IFTHENELSE語句的一般格式為圖1,對(duì)應(yīng)的程序框圖為圖2。否是滿足條
33、件?語句1語句2IF 條件 THEN語句1ELSE語句2END IF圖1 圖2分析:在IFTHENELSE語句中,“條件”表示判斷的條件,“語句1”表示滿足條件時(shí)執(zhí)行的操作內(nèi)容;“語句2”表示不滿足條件時(shí)執(zhí)行的操作內(nèi)容;END IF表示條件語句的結(jié)束。計(jì)算機(jī)在執(zhí)行時(shí),首先對(duì)IF后的條件進(jìn)行判斷,如果條件符合,則執(zhí)行THEN后面的語句1;若條件不符合,則執(zhí)行ELSE后面的語句2。3、IFTHEN語句滿足條件?語句是否(圖4)IFTHEN語句的一般格式為圖3,對(duì)應(yīng)的程序框圖為圖4。IF 條件 THEN語句END IF(圖3)注意:“條件”表示判斷的條件;“語句”表示滿足條件時(shí)執(zhí)行的操作內(nèi)容,條件不
34、滿足時(shí),結(jié)束程序;END IF表示條件語句的結(jié)束。計(jì)算機(jī)在執(zhí)行時(shí)首先對(duì)IF后的條件進(jìn)行判斷,如果條件符合就執(zhí)行THEN后邊的語句,若條件不符合則直接結(jié)束該條件語句,轉(zhuǎn)而執(zhí)行其它語句。123循環(huán)語句循環(huán)結(jié)構(gòu)是由循環(huán)語句來實(shí)現(xiàn)的。對(duì)應(yīng)于程序框圖中的兩種循環(huán)結(jié)構(gòu),一般程序設(shè)計(jì)語言中也有當(dāng)型(WHILE型)和直到型(UNTIL型)兩種語句結(jié)構(gòu)。即WHILE語句和UNTIL語句。1、WHILE語句滿足條件?循環(huán)體否是(1)WHILE語句的一般格式是 對(duì)應(yīng)的程序框圖是WHILE 條件循環(huán)體WEND(2)當(dāng)計(jì)算機(jī)遇到WHILE語句時(shí),先判斷條件的真假,如果條件符合,就執(zhí)行WHILE與WEND之間的循環(huán)體;然
35、后再檢查上述條件,如果條件仍符合,再次執(zhí)行循環(huán)體,這個(gè)過程反復(fù)進(jìn)行,直到某一次條件不符合為止。這時(shí),計(jì)算機(jī)將不執(zhí)行循環(huán)體,直接跳到WEND語句后,接著執(zhí)行WEND之后的語句。因此,當(dāng)型循環(huán)有時(shí)也稱為“前測(cè)試型”循環(huán)。2、UNTIL語句(1)UNTIL語句的一般格式是 對(duì)應(yīng)的程序框圖是滿足條件?循環(huán)體是否DO循環(huán)體LOOP UNTIL 條件(2)直到型循環(huán)又稱為“后測(cè)試型”循環(huán),從UNTIL型循環(huán)結(jié)構(gòu)分析,計(jì)算機(jī)執(zhí)行該語句時(shí),先執(zhí)行一次循環(huán)體,然后進(jìn)行條件的判斷,如果條件不滿足,繼續(xù)返回執(zhí)行循環(huán)體,然后再進(jìn)行條件的判斷,這個(gè)過程反復(fù)進(jìn)行,直到某一次條件滿足時(shí),不再執(zhí)行循環(huán)體,跳到LOOPUNTI
36、L語句后執(zhí)行其他語句,是先執(zhí)行循環(huán)體后進(jìn)行條件判斷的循環(huán)語句。分析:當(dāng)型循環(huán)與直到型循環(huán)的區(qū)別:(先由學(xué)生討論再歸納)當(dāng)型循環(huán)先判斷后執(zhí)行,直到型循環(huán)先執(zhí)行后判斷;在WHILE語句中,是當(dāng)條件滿足時(shí)執(zhí)行循環(huán)體,在UNTIL語句中,是當(dāng)條件不滿足時(shí)執(zhí)行循環(huán)1.3.1輾轉(zhuǎn)相除法與更相減損術(shù)1、輾轉(zhuǎn)相除法。也叫歐幾里德算法,用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:(1):用較大的數(shù)m除以較小的數(shù)n得到一個(gè)商和一個(gè)余數(shù);(2):若0,則n為m,n的最大公約數(shù);若0,則用除數(shù)n除以余數(shù)得到一個(gè)商和一個(gè)余數(shù);(3):若0,則為m,n的最大公約數(shù);若0,則用除數(shù)除以余數(shù)得到一個(gè)商和一個(gè)余數(shù); 依次計(jì)算直至0,此
37、時(shí)所得到的即為所求的最大公約數(shù)。2、更相減損術(shù)我國(guó)早期也有求最大公約數(shù)問題的算法,就是更相減損術(shù)。在九章算術(shù)中有更相減損術(shù)求最大公約數(shù)的步驟:可半者半之,不可半者,副置分母子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之。翻譯為:(1):任意給出兩個(gè)正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡(jiǎn);若不是,執(zhí)行第二步。(2):以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個(gè)操作,直到所得的數(shù)相等為止,則這個(gè)數(shù)(等數(shù))就是所求的最大公約數(shù)。例2用更相減損術(shù)求98與63的最大公約數(shù).分析:(略)3、輾轉(zhuǎn)相除法與更相減損術(shù)的區(qū)別:(1)都是求最大公約數(shù)的方法,計(jì)算上輾轉(zhuǎn)相除法
38、以除法為主,更相減損術(shù)以減法為主,計(jì)算次數(shù)上輾轉(zhuǎn)相除法計(jì)算次數(shù)相對(duì)較少,特別當(dāng)兩個(gè)數(shù)字大小區(qū)別較大時(shí)計(jì)算次數(shù)的區(qū)別較明顯。(2)從結(jié)果體現(xiàn)形式來看,輾轉(zhuǎn)相除法體現(xiàn)結(jié)果是以相除余數(shù)為0則得到,而更相減損術(shù)則以減數(shù)與差相等而得到1.3.2秦九韶算法與排序1、秦九韶算法概念:f(x)=anxn+an-1xn-1+.+a1x+a0求值問題f(x)=anxn+an-1xn-1+.+a1x+a0=( anxn-1+an-1xn-2+.+a1)x+a0=( anxn-2+an-1xn-3+.+a2)x+a1)x+a0=(.( anx+an-1)x+an-2)x+.+a1)x+a0求多項(xiàng)式的值時(shí),首先計(jì)算最內(nèi)
39、層括號(hào)內(nèi)依次多項(xiàng)式的值,即v1=anx+an-1然后由內(nèi)向外逐層計(jì)算一次多項(xiàng)式的值,即v2=v1x+an-2v3=v2x+an-3vn=vn-1x+a0這樣,把n次多項(xiàng)式的求值問題轉(zhuǎn)化成求n個(gè)一次多項(xiàng)式的值的問題。2、兩種排序方法:直接插入排序和冒泡排序1、直接插入排序基本思想:插入排序的思想就是讀一個(gè),排一個(gè)。將第個(gè)數(shù)放入數(shù)組的第個(gè)元素中,以后讀入的數(shù)與已存入數(shù)組的數(shù)進(jìn)行比較,確定它在從大到小的排列中應(yīng)處的位置將該位置以及以后的元素向后推移一個(gè)位置,將讀入的新數(shù)填入空出的位置中(由于算法簡(jiǎn)單,可以舉例說明)2、冒泡排序基本思想:依次比較相鄰的兩個(gè)數(shù),把大的放前面,小的放后面.即首先比較第1個(gè)
40、數(shù)和第2個(gè)數(shù),大數(shù)放前,小數(shù)放后.然后比較第2個(gè)數(shù)和第3個(gè)數(shù)直到比較最后兩個(gè)數(shù).第一趟結(jié)束,最小的一定沉到最后.重復(fù)上過程,仍從第1個(gè)數(shù)開始,到最后第2個(gè)數(shù) 由于在排序過程中總是大數(shù)往前,小數(shù)往后,相當(dāng)氣泡上升,所以叫冒泡排序.1.3.3進(jìn)位制1、概念:進(jìn)位制是一種記數(shù)方式,用有限的數(shù)字在不同的位置表示不同的數(shù)值。可使用數(shù)字符號(hào)的個(gè)數(shù)稱為基數(shù),基數(shù)為n,即可稱n進(jìn)位制,簡(jiǎn)稱n進(jìn)制?,F(xiàn)在最常用的是十進(jìn)制,通常使用10個(gè)阿拉伯?dāng)?shù)字0-9進(jìn)行記數(shù)。對(duì)于任何一個(gè)數(shù),我們可以用不同的進(jìn)位制來表示。比如:十進(jìn)數(shù)57,可以用二進(jìn)制表示為111001,也可以用八進(jìn)制表示為71、用十六進(jìn)制表示為39,它們所代表
41、的數(shù)值都是一樣的。一般地,若k是一個(gè)大于一的整數(shù),那么以k為基數(shù)的k進(jìn)制可以表示為:,而表示各種進(jìn)位制數(shù)一般在數(shù)字右下腳加注來表示,如111001(2)表示二進(jìn)制數(shù),34(5)表示5進(jìn)制數(shù)第二章統(tǒng)計(jì)2.1.1簡(jiǎn)單隨機(jī)抽樣1總體和樣本 在統(tǒng)計(jì)學(xué)中 , 把研究對(duì)象的全體叫做總體把每個(gè)研究對(duì)象叫做個(gè)體把總體中個(gè)體的總數(shù)叫做總體容量為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:, , , 研究,我們稱它為樣本其中個(gè)體的個(gè)數(shù)稱為樣本容量2簡(jiǎn)單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨 機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位
42、完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。3簡(jiǎn)單隨機(jī)抽樣常用的方法: (1)抽簽法;隨機(jī)數(shù)表法;計(jì)算機(jī)模擬法;使用統(tǒng)計(jì)軟件直接抽取。在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:總體變異情況;允許誤差范圍;概率保證程度。4抽簽法: (1)給調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào); (2)準(zhǔn)備抽簽的工具,實(shí)施抽簽 (3)對(duì)樣本中的每一個(gè)個(gè)體進(jìn)行測(cè)量或調(diào)查 例:請(qǐng)調(diào)查你所在的學(xué)校的學(xué)生做喜歡的體育活動(dòng)情況。5隨機(jī)數(shù)表法: 例:利用隨機(jī)數(shù)表在所在的班級(jí)中抽取10位同學(xué)參加某項(xiàng)活動(dòng)。2.1.2系統(tǒng)抽樣1系統(tǒng)抽樣(等
43、距抽樣或機(jī)械抽樣):把總體的單位進(jìn)行排序,再計(jì)算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個(gè)樣本采用簡(jiǎn)單隨機(jī)抽樣的辦法抽取。K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)前提條件:總體中個(gè)體的排列對(duì)于研究的變量來說,應(yīng)是隨機(jī)的,即不存在某種與研究變量相關(guān)的規(guī)則分布??梢栽谡{(diào)查允許的條件下,從不同的樣本開始抽樣,對(duì)比幾次樣本的特點(diǎn)。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。2系統(tǒng)抽樣,即等距抽樣是實(shí)際中最為常用的抽樣方法之一。因?yàn)樗鼘?duì)抽樣框的要求較低,實(shí)施也比較簡(jiǎn)單。更為重要的是,如果有某種與調(diào)查指標(biāo)相關(guān)的輔助變量可供使用,總體單元按輔助變量的大
44、小順序排隊(duì)的話,使用系統(tǒng)抽樣可以大大提高估計(jì)精度。2.1.3分層抽樣1分層抽樣(類型抽樣):先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟?,然后再在各個(gè)類型或?qū)哟沃胁捎煤?jiǎn)單隨機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。兩種方法:1先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。2先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。2分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個(gè)個(gè)同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。分層標(biāo)準(zhǔn)
45、:(1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。(2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。(3)以那些有明顯分層區(qū)分的變量作為分層變量。3分層的比例問題: (1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì)非常少,此時(shí)采用該方法,主要是便于對(duì)不同層次的子總體進(jìn)行專門研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對(duì)各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際的比例結(jié)構(gòu)。2.2.2用樣本的數(shù)字
46、特征估計(jì)總體的數(shù)字特征1、本均值:2、樣本標(biāo)準(zhǔn)差:3用樣本估計(jì)總體時(shí),如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會(huì)有偏差。在隨機(jī)抽樣中,這種偏差是不可避免的。雖然我們用樣本數(shù)據(jù)得到的分布、均值和標(biāo)準(zhǔn)差并不是總體的真正的分布、均值和標(biāo)準(zhǔn)差,而只是一個(gè)估計(jì),但這種估計(jì)是合理的,特別是當(dāng)樣本量很大時(shí),它們確實(shí)反映了總體的信息。4(1)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)共同的常數(shù),標(biāo)準(zhǔn)差不變(2)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)乘以一個(gè)共同的常數(shù)k,標(biāo)準(zhǔn)差變?yōu)樵瓉淼膋倍(3)一組數(shù)據(jù)中的最大值和最小值對(duì)標(biāo)準(zhǔn)差的影響,區(qū)間的應(yīng)用;“去掉一個(gè)最高分,去掉一個(gè)最低分”中的
47、科學(xué)道理2.3.2兩個(gè)變量的線性相關(guān)1、概念: (1)回歸直線方程 (2)回歸系數(shù)2最小二乘法3直線回歸方程的應(yīng)用 (1)描述兩變量之間的依存關(guān)系;利用直線回歸方程即可定量描述兩個(gè)變量間依存的數(shù)量關(guān)系 (2)利用回歸方程進(jìn)行預(yù)測(cè);把預(yù)報(bào)因子(即自變量x)代入回歸方程對(duì)預(yù)報(bào)量(即因變量Y)進(jìn)行估計(jì),即可得到個(gè)體Y值的容許區(qū)間。 (3)利用回歸方程進(jìn)行統(tǒng)計(jì)控制規(guī)定Y值的變化,通過控制x的范圍來實(shí)現(xiàn)統(tǒng)計(jì)控制的目標(biāo)。如已經(jīng)得到了空氣中NO2的濃度和汽車流量間的回歸方程,即可通過控制汽車流量來控制空氣中NO2的濃度。4應(yīng)用直線回歸的注意事項(xiàng) (1)做回歸分析要有實(shí)際意義; (2)回歸分析前,最好先作出散
48、點(diǎn)圖; (3)回歸直線不要外延。第三章概率3.1.13.1.2隨機(jī)事件的概率及概率的意義1、基本概念:(1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;(2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件S的確定事件;(4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的概率:對(duì)于給定的隨機(jī)事件A,如果隨
49、著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率3.1.3 概率的基本性質(zhì)1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若AB為不可能事件,即AB=,那么稱事件A與事件B互斥;(3)若AB為不可能事件,AB為必然事
50、件,那么稱事件A與事件B互為對(duì)立事件;(4)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(AB)= P(A)+ P(B);若事件A與B為對(duì)立事件,則AB為必然事件,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=1P(B)2、概率的基本性質(zhì):1)必然事件概率為1,不可能事件概率為0,因此0P(A)1;2)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(AB)= P(A)+ P(B);3)若事件A與B為對(duì)立事件,則AB為必然事件,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=1P(B);4)互斥事件與對(duì)立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中不會(huì)同時(shí)發(fā)生,其具體包括三種
51、不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時(shí)不發(fā)生,而對(duì)立事件是指事件A與事件B有且僅有一個(gè)發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對(duì)立事件互斥事件的特殊情形。3.2.13.2.2古典概型及隨機(jī)數(shù)的產(chǎn)生1、(1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。(2)古典概型的解題步驟;求出總的基本事件數(shù);求出事件A所包含的基本事件數(shù),然后利用公式P(A)=3.3.13.3.2幾何概型及均勻隨機(jī)數(shù)的產(chǎn)生1、基本概念:(1)幾何概率模型:如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積
52、)成比例,則稱這樣的概率模型為幾何概率模型;(2)幾何概型的概率公式:P(A)=;(3)幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等高中數(shù)學(xué)必修4第一章三角函數(shù)2、角的頂點(diǎn)與原點(diǎn)重合,角的始邊與軸的非負(fù)半軸重合,終邊落在第幾象限,則稱為第幾象限角第一象限角的集合為第二象限角的集合為第三象限角的集合為第四象限角的集合為終邊在軸上的角的集合為終邊在軸上的角的集合為終邊在坐標(biāo)軸上的角的集合為3、與角終邊相同的角的集合為4、長(zhǎng)度等于半徑長(zhǎng)的弧所對(duì)的圓心角叫做弧度5、半徑為的圓的圓心角所對(duì)弧的長(zhǎng)為,則角的弧度數(shù)的絕對(duì)值是6、弧度制與角度制的換算公式
53、:,7、若扇形的圓心角為,半徑為,弧長(zhǎng)為,周長(zhǎng)為,面積為,則,Pvx y A O M T 8、設(shè)是一個(gè)任意大小的角,的終邊上任意一點(diǎn)的坐標(biāo)是,它與原點(diǎn)的距離是,則,9、三角函數(shù)在各象限的符號(hào):第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正10、三角函數(shù)線:,11、角三角函數(shù)的基本關(guān)系:;12、函數(shù)的誘導(dǎo)公式:,口訣:函數(shù)名稱不變,符號(hào)看象限,口訣:正弦與余弦互換,符號(hào)看象限13、的圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(橫
54、坐標(biāo)不變),得到函數(shù)的圖象數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象14、函數(shù)的性質(zhì):= 1 * GB3振幅:;= 2 * GB3周期:;= 3 * GB3頻率:;= 4 * GB3相位:;= 5 * GB3初相:函數(shù),當(dāng)時(shí),取得最小值為 ;當(dāng)時(shí),取得最大值為,則,15、正弦函數(shù)、余弦函數(shù)和正切函數(shù)的圖象與性質(zhì):函數(shù)性質(zhì)圖象定義域值域最值當(dāng)時(shí),;當(dāng)時(shí),當(dāng)時(shí), ;當(dāng)時(shí),既無最大值也無最小值周期性奇偶性奇函數(shù)偶函數(shù)奇函
55、數(shù)單調(diào)性在上是增函數(shù);在上是減函數(shù)在上是增函數(shù);在上是減函數(shù)在上是增函數(shù)對(duì)稱性對(duì)稱中心對(duì)稱軸對(duì)稱中心對(duì)稱軸對(duì)稱中心無對(duì)稱軸第二章 平面向量16、向量:既有大小,又有方向的量 數(shù)量:只有大小,沒有方向的量有向線段的三要素:起點(diǎn)、方向、長(zhǎng)度 零向量:長(zhǎng)度為的向量單位向量:長(zhǎng)度等于個(gè)單位的向量平行向量(共線向量):方向相同或相反的非零向量零向量與任一向量平行相等向量:長(zhǎng)度相等且方向相同的向量17、向量加法運(yùn)算:= 1 * GB2三角形法則的特點(diǎn):首尾相連= 2 * GB2平行四邊形法則的特點(diǎn):共起點(diǎn)= 3 * GB2三角形不等式: = 4 * GB2運(yùn)算性質(zhì):= 1 * GB3交換律:;= 2 *
56、GB3結(jié)合律:;= 3 * GB3= 5 * GB2坐標(biāo)運(yùn)算:設(shè),則18、向量減法運(yùn)算:= 1 * GB2三角形法則的特點(diǎn):共起點(diǎn),連終點(diǎn),方向指向被減向量= 2 * GB2坐標(biāo)運(yùn)算:設(shè),則設(shè)、兩點(diǎn)的坐標(biāo)分別為,則19、向量數(shù)乘運(yùn)算:= 1 * GB2實(shí)數(shù)與向量的積是一個(gè)向量的運(yùn)算叫做向量的數(shù)乘,記作= 1 * GB3;= 2 * GB3當(dāng)時(shí),的方向與的方向相同;當(dāng)時(shí),的方向與的方向相反;當(dāng)時(shí),= 2 * GB2運(yùn)算律:= 1 * GB3;= 2 * GB3;= 3 * GB3= 3 * GB2坐標(biāo)運(yùn)算:設(shè),則20、向量共線定理:向量與共線,當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù),使設(shè),其中,則當(dāng)且僅當(dāng)時(shí),向
57、量、共線21、平面向量基本定理:如果、是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量,有且只有一對(duì)實(shí)數(shù)、,使(不共線的向量、作為這一平面內(nèi)所有向量的一組基底)22、分點(diǎn)坐標(biāo)公式:設(shè)點(diǎn)是線段上的一點(diǎn),、的坐標(biāo)分別是,當(dāng)時(shí),點(diǎn)的坐標(biāo)是(當(dāng)23、平面向量的數(shù)量積:= 1 * GB2零向量與任一向量的數(shù)量積為= 2 * GB2性質(zhì):設(shè)和都是非零向量,則= 1 * GB3= 2 * GB3當(dāng)與同向時(shí),;當(dāng)與反向時(shí),;或= 3 * GB3= 3 * GB2運(yùn)算律:= 1 * GB3;= 2 * GB3;= 3 * GB3= 4 * GB2坐標(biāo)運(yùn)算:設(shè)兩個(gè)非零向量,則若,則,或 設(shè),則設(shè)、都是非
58、零向量,是與的夾角,則第三章 三角恒等變換24、兩角和與差的正弦、余弦和正切公式:= 1 * GB2;= 2 * GB2;= 3 * GB2;= 4 * GB2;= 5 * GB2 ();= 6 * GB2 ()25、二倍角的正弦、余弦和正切公式:= 1 * GB2= 2 * GB2升冪公式降冪公式, = 3 * GB226、(后兩個(gè)不用判斷符號(hào),更加好用)27、合一變形把兩個(gè)三角函數(shù)的和或差化為“一個(gè)三角函數(shù),一個(gè)角,一次方”的 形式。,其中28、三角變換是運(yùn)算化簡(jiǎn)的過程中運(yùn)用較多的變換,提高三角變換能力,要學(xué)會(huì)創(chuàng)設(shè)條件,靈活運(yùn)用三角公式,掌握運(yùn)算,化簡(jiǎn)的方法和技能常用的數(shù)學(xué)思想方法技巧如下
59、:(1)角的變換:在三角化簡(jiǎn),求值,證明中,表達(dá)式中往往出現(xiàn)較多的相異角,可根據(jù)角與角之間的和差,倍半,互補(bǔ),互余的關(guān)系,運(yùn)用角的變換,溝通條件與結(jié)論中角的差異,使問題獲解,對(duì)角的變形如:是的二倍;是的二倍;是的二倍;是的二倍; ;問:;等等(2)函數(shù)名稱變換:三角變形中,常常需要變函數(shù)名稱為同名函數(shù)。如在三角函數(shù)中正余弦是基礎(chǔ),通?;袨橄?,變異名為同名。(3)常數(shù)代換:在三角函數(shù)運(yùn)算,求值,證明中,有時(shí)需要將常數(shù)轉(zhuǎn)化為三角函數(shù)值,例如常數(shù)“1”的代換變形有:(4)冪的變換:降冪是三角變換時(shí)常用方法,對(duì)次數(shù)較高的三角函數(shù)式,一般采用降冪處理的方法。常用降冪公式有:;。降冪并非絕對(duì),有時(shí)需要升
60、冪,如對(duì)無理式常用升冪化為有理式,常用升冪公式有:;(5)公式變形:三角公式是變換的依據(jù),應(yīng)熟練掌握三角公式的順用,逆用及變形應(yīng)用。 如:; ;=;=;(其中;);(6)三角函數(shù)式的化簡(jiǎn)運(yùn)算通常從:“角、名、形、冪”四方面入手;基本規(guī)則是:見切化弦,異角化同角,復(fù)角化單角,異名化同名,高次化低次,無理化有理,特殊值與特殊角的三角函數(shù)互化。如:;。 高中數(shù)學(xué)必修51、正弦定理:在中,、分別為角、的對(duì)邊,為的外接圓的半徑,則有2、正弦定理的變形公式:= 1 * GB3,;= 2 * GB3,;= 3 * GB3;= 4 * GB33、三角形面積公式:4、余弦定理:在中,有,5、余弦定理的推論:,6
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小區(qū)兩間門面租賃合同
- 單位向私人借款合同書
- 國(guó)際空運(yùn)運(yùn)輸代理合同
- 風(fēng)險(xiǎn)管理與應(yīng)對(duì)策略制定作業(yè)指導(dǎo)書
- 2025年泰安考從業(yè)資格證貨運(yùn)試題
- 小學(xué)三年級(jí),五年級(jí)下冊(cè)數(shù)學(xué)口算題比賽試卷
- 小學(xué)二年級(jí)數(shù)學(xué)萬以內(nèi)口算題
- 2025年北京交通運(yùn)輸從業(yè)資格證怎樣考試
- 2025年西藏貨運(yùn)從業(yè)資格證模擬考試系統(tǒng)
- 2025年烏蘭察布下載貨運(yùn)從業(yè)資格證模擬考試題
- 南京地區(qū)幼兒園室內(nèi)空氣污染物與兒童健康的相關(guān)性研究
- 2024年湖南鐵路科技職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)及答案解析
- (正式版)SHT 3115-2024 石油化工管式爐輕質(zhì)澆注料襯里工程技術(shù)規(guī)范
- (正式版)JBT 9630.1-2024 汽輪機(jī)鑄鋼件無損檢測(cè) 第1部分:磁粉檢測(cè)
- 平安產(chǎn)險(xiǎn)陜西省地方財(cái)政生豬價(jià)格保險(xiǎn)條款
- 地震應(yīng)急救援培訓(xùn)課件
- 《南京瞻園賞析》課件2
- 《有責(zé)任有擔(dān)當(dāng)青春才會(huì)閃光》教學(xué)課件-2023-2024學(xué)年高一下學(xué)期愛國(guó)主義教育主題班會(huì)
- 初中物理光學(xué)難題難度含解析答案
- 幼兒中班故事《豬太太生寶寶》課件
- 2021年湖南省公務(wù)員考試行政職業(yè)能力測(cè)驗(yàn)真題
評(píng)論
0/150
提交評(píng)論