![2023高考科學(xué)復(fù)習(xí)解決方案-數(shù)學(xué)(名校內(nèi)參版) 第七章 7.6復(fù)數(shù)(word含答案解析)_第1頁](http://file4.renrendoc.com/view/5737a3e35ac022cdd58de7d686aa1e4f/5737a3e35ac022cdd58de7d686aa1e4f1.gif)
![2023高考科學(xué)復(fù)習(xí)解決方案-數(shù)學(xué)(名校內(nèi)參版) 第七章 7.6復(fù)數(shù)(word含答案解析)_第2頁](http://file4.renrendoc.com/view/5737a3e35ac022cdd58de7d686aa1e4f/5737a3e35ac022cdd58de7d686aa1e4f2.gif)
![2023高考科學(xué)復(fù)習(xí)解決方案-數(shù)學(xué)(名校內(nèi)參版) 第七章 7.6復(fù)數(shù)(word含答案解析)_第3頁](http://file4.renrendoc.com/view/5737a3e35ac022cdd58de7d686aa1e4f/5737a3e35ac022cdd58de7d686aa1e4f3.gif)
![2023高考科學(xué)復(fù)習(xí)解決方案-數(shù)學(xué)(名校內(nèi)參版) 第七章 7.6復(fù)數(shù)(word含答案解析)_第4頁](http://file4.renrendoc.com/view/5737a3e35ac022cdd58de7d686aa1e4f/5737a3e35ac022cdd58de7d686aa1e4f4.gif)
![2023高考科學(xué)復(fù)習(xí)解決方案-數(shù)學(xué)(名校內(nèi)參版) 第七章 7.6復(fù)數(shù)(word含答案解析)_第5頁](http://file4.renrendoc.com/view/5737a3e35ac022cdd58de7d686aa1e4f/5737a3e35ac022cdd58de7d686aa1e4f5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、76復(fù)數(shù)(教師獨(dú)具內(nèi)容)1通過方程的解,認(rèn)識(shí)復(fù)數(shù)理解復(fù)數(shù)的代數(shù)表示與分類及其幾何意義,理解兩個(gè)復(fù)數(shù)相等的含義掌握共軛復(fù)數(shù)的概念掌握復(fù)數(shù)代數(shù)表示式的四則運(yùn)算,了解復(fù)數(shù)加、減運(yùn)算的幾何意義2掌握復(fù)數(shù)代數(shù)形式的加、減運(yùn)算法則會(huì)用復(fù)數(shù)代數(shù)形式的加、減運(yùn)算法則進(jìn)行簡(jiǎn)單的復(fù)數(shù)加、減運(yùn)算了解復(fù)數(shù)代數(shù)形式的加、減運(yùn)算的幾何意義掌握復(fù)數(shù)乘、除運(yùn)算的運(yùn)算法則會(huì)用復(fù)數(shù)乘、除運(yùn)算的運(yùn)算法則進(jìn)行簡(jiǎn)單的復(fù)數(shù)乘、除運(yùn)算理解復(fù)數(shù)乘法的交換律、結(jié)合律和乘法對(duì)加法的分配律3重點(diǎn)提升數(shù)學(xué)抽象、數(shù)學(xué)運(yùn)算和邏輯推理素養(yǎng)(教師獨(dú)具內(nèi)容)1本考點(diǎn)是高考必考內(nèi)容,屬于中低檔題目,主要以選擇題或填空題的形式考查命題的關(guān)注點(diǎn)在復(fù)數(shù)的乘法與除法運(yùn)
2、算熟練掌握復(fù)數(shù)的基本運(yùn)算法則,準(zhǔn)確理解復(fù)數(shù)的相關(guān)概念是解決問題的關(guān)鍵2考查方向有三個(gè)方面:一是復(fù)數(shù)的四則運(yùn)算,主要考查復(fù)數(shù)的乘法與除法運(yùn)算;二是復(fù)數(shù)的概念,以復(fù)數(shù)的基本運(yùn)算為背景,考查復(fù)數(shù)的模、共軛復(fù)數(shù)以及實(shí)部、虛部等基本概念;三是復(fù)數(shù)的幾何意義,與復(fù)數(shù)的基本運(yùn)算相結(jié)合主要考查復(fù)數(shù)對(duì)應(yīng)的點(diǎn)以及模的幾何意義的應(yīng)用(教師獨(dú)具內(nèi)容)(教師獨(dú)具內(nèi)容)1復(fù)數(shù)的定義與分類(1)復(fù)數(shù)的概念:形如abi(a,bR)的數(shù)叫做復(fù)數(shù),其中a,b分別是它的eq o(,sup3(01)實(shí)部和eq o(,sup3(02)虛部(2)分類滿足條件(a,bR)復(fù)數(shù)的分類abi為實(shí)數(shù)eq o(,sup3(03)b0abi為虛數(shù)e
3、q o(,sup3(04)b0abi為純虛數(shù)eq o(,sup3(05)a0且b02復(fù)數(shù)的有關(guān)概念復(fù)數(shù)相等abicdieq o(,sup3(01)ac,bd(a,b,c,dR)共軛復(fù)數(shù)abi與cdi共軛eq o(,sup3(02)ac,bd(a,b,c,dR)復(fù)數(shù)的模設(shè)eq o(OZ,sup6()對(duì)應(yīng)的復(fù)數(shù)為zabi(a,bR),則向量eq o(OZ,sup6()的模叫做復(fù)數(shù)zabi的模(或絕對(duì)值),記作eq o(,sup3(03)|z|或|abi|,即|z|abi|eq o(,sup3(04)eq r(a2b2)(a,bR)3復(fù)數(shù)的幾何意義復(fù)平面的概念建立eq o(,sup3(01)直角坐標(biāo)
4、系來表示復(fù)數(shù)的平面叫做復(fù)平面實(shí)軸、虛軸在復(fù)平面內(nèi),x軸叫做eq o(,sup3(02)實(shí)軸,y軸叫做eq o(,sup3(03)虛軸,實(shí)軸上的點(diǎn)都表示eq o(,sup3(04)實(shí)數(shù);除原點(diǎn)以外,虛軸上的點(diǎn)都表示eq o(,sup3(05)純虛數(shù)復(fù)數(shù)的幾何表示復(fù)數(shù)zabi(a,bR) 復(fù)平面內(nèi)的點(diǎn)eq o(,sup3(06)Z(a,b)平面向量eq o(OZ,sup6()4復(fù)數(shù)的運(yùn)算(1)復(fù)數(shù)的加、減、乘、除運(yùn)算法則設(shè)z1abi,z2cdi(a,b,c,dR),則加法:z1z2(abi)(cdi)eq o(,sup3(01)(ac)(bd)i;減法:z1z2(abi)(cdi)eq o(,su
5、p3(02)(ac)(bd)i;乘法:z1z2(abi)(cdi)eq o(,sup3(03)(acbd)(adbc)i;除法:eq f(z1,z2)eq f(abi,cdi)eq f(abicdi,cdicdi)eq o(,sup3(04)eq f(acbd,c2d2)eq f(bcad,c2d2)i(cdi0)(2)幾何意義:復(fù)數(shù)加、減法可按向量的平行四邊形或三角形法則進(jìn)行如圖給出的平行四邊形OZ1ZZ2可以直觀地反映出復(fù)數(shù)加、減法的幾何意義,即eq o(OZ,sup6()eq o(OZ1,sup6()eq o(OZ2,sup6(),eq o(Z1Z2,sup6()eq o(OZ2,sup
6、6()eq o(OZ1,sup6().(3)復(fù)數(shù)加法的運(yùn)算定律設(shè)z1,z2,z3C,則復(fù)數(shù)加法滿足以下運(yùn)算律:交換律:z1z2eq o(,sup3(05)z2z1;結(jié)合律:(z1z2)z3eq o(,sup3(06)z1(z2z3)(4)復(fù)數(shù)乘法的運(yùn)算定律對(duì)于任意z1,z2,z3C,復(fù)數(shù)乘法滿足以下運(yùn)算律:交換律:z1z2eq o(,sup3(07)z2z1;結(jié)合律:(z1z2)z3eq o(,sup3(08)z1(z2z3);分配律:z1(z2z3)eq o(,sup3(09)z1z2z1z3.5常用結(jié)論(1)(1i)22i,eq f(1i,1i)i,eq f(1i,1i)i.(2)baii
7、(abi)(3)i4n1,i4n1i,i4n21,i4n3i(nN*);i4ni4n1i4n2i4n30(nN*)(4)zeq o(z,sup6()|z|2|eq o(z,sup6()|2,|z1z2|z1|z2|,eq blc|rc|(avs4alco1(f(z1,z2)eq f(|z1|,|z2|),|zn|z|n.1思考辨析(正確的打“”,錯(cuò)誤的打“”)(1)若aC,則a20.()(2)已知zabi(a,bR),當(dāng)a0時(shí),復(fù)數(shù)z為純虛數(shù)()(3)復(fù)數(shù)zabi(a,bR)的虛部為bi.()(4)方程x2x10沒有解()答案(1)(2)(3)(4)2已知復(fù)數(shù)zeq f(2,1i),其中i為虛
8、數(shù)單位,則復(fù)數(shù)z的共軛復(fù)數(shù)為_答案1i解析因?yàn)閺?fù)數(shù)zeq f(2,1i)eq f(21i,1i1i)1i,所以復(fù)數(shù)z的共軛復(fù)數(shù)eq o(z,sup6()1i.3已知x0,若(xi)2是純虛數(shù)(其中i為虛數(shù)單位),則x_.答案1解析因?yàn)?xi)2x22xii2x212xi為純虛數(shù),所以eq blcrc (avs4alco1(x210,,x0,,x0,)解得x1.4已知復(fù)數(shù)zeq f(1i,2i),其中i為虛數(shù)單位,則復(fù)數(shù)z的虛部為_答案eq f(1,2)解析解法一:zeq f(1ii,2ii)eq f(1i,2)eq f(1,2)eq f(1,2)i,所以z的虛部是eq f(1,2).解法二:設(shè)
9、zabi(a,bR),則2i(abi)1i,即2b2ai1i,所以2b1,得beq f(1,2).5已知i為虛數(shù)單位,復(fù)數(shù)zeq f(r(3),2)eq f(3,2)i的模為_答案eq r(3)解析|z|eq r(blc(rc)(avs4alco1(f(r(3),2)2blc(rc)(avs4alco1(f(3,2)2)eq r(3).1(2021新高考卷)已知z2i,則z(eq o(z,sup6()i)()A62iB42iC62iD42i答案C解析z(eq o(z,sup6()i)(2i)(2ii)(2i)(22i)44i2i2i262i.故選C.2(2021新高考卷)復(fù)數(shù)eq f(2i,1
10、3i)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限為()A第一象限B第二象限C第三象限D(zhuǎn)第四象限答案A解析eq f(2i,13i)eq f(2i13i,10)eq f(55i,10)eq f(1i,2),所以該復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為eq blc(rc)(avs4alco1(f(1,2),f(1,2),該點(diǎn)在第一象限故選A.3(2021全國(guó)甲卷)已知(1i)2z32i,則z()A1eq f(3,2)iB1eq f(3,2)iCeq f(3,2)iDeq f(3,2)i答案B解析zeq f(32i,1i2)eq f(32i,2i)eq f(3i2,2)1eq f(3,2)i.故選B.4(2021全國(guó)乙卷)設(shè)2(
11、zeq o(z,sup6()3(zeq o(z,sup6()46i,則z()A12iB12iC1iD1i答案C解析設(shè)zabi(a,bR),則eq o(z,sup6()abi,2(zeq o(z,sup6()3(zeq o(z,sup6()4a6bi46i,所以a1,b1,所以z1i.故選C.5(2021全國(guó)乙卷)設(shè)iz43i,則z()A34iB34iC34iD34i答案C解析由iz43i兩邊同時(shí)乘i,得z4i3,所以z34i.故選C.6(2020全國(guó)卷)復(fù)數(shù)eq f(1,13i)的虛部是()Aeq f(3,10)Beq f(1,10)C.eq f(1,10)Deq f(3,10)答案D解析因?yàn)?/p>
12、eq f(1,13i)eq f(13i,13i13i)eq f(1,10)eq f(3,10)i,所以復(fù)數(shù)eq f(1,13i)的虛部為eq f(3,10).故選D.一、基礎(chǔ)知識(shí)鞏固考點(diǎn)復(fù)數(shù)的分類及有關(guān)概念例1已知i為虛數(shù)單位,aR,若(a1)(a1i)是純虛數(shù),則a的值為()A1或1B1C1D3答案C解析(a1)(a1i)(a21)(a1)i是純虛數(shù),eq blcrc (avs4alco1(a210,,a10,)a1.故選C.例2已知eq f(z,1i)2i,則eq o(z,sup6()(z的共軛復(fù)數(shù))為()A3iB3iC3iD3i答案C解析由題意得z(2i)(1i)3i,所以eq o(z,
13、sup6()3i.故選C.例3設(shè)zeq f(1i,1i)2i,則|z|()A0Beq f(1,2)C1Deq r(2)答案C解析因?yàn)閦eq f(1i,1i)2ieq f(1i2,1i1i)2ii2ii,所以|z|1.故選C.1.已知復(fù)數(shù)zeq f(a,2i)eq f(2i,5)的實(shí)部與虛部的和為2,則實(shí)數(shù)a的值為()A0B1C2D3答案D解析易知zeq f(a,2i)eq f(2i,5)eq f(2a2,5)eq f(a1,5)i,由題意得eq f(2a2,5)eq f(a1,5)2,解得a3.故選D.2若(m2m)(m23m2)i是純虛數(shù),則實(shí)數(shù)m的值為()A0B1或2C1D0或1答案A解析
14、(m2m)(m23m2)i是純虛數(shù),eq blcrc (avs4alco1(m2m0,,m23m20,)解得m0.故選A.3已知i為虛數(shù)單位,復(fù)數(shù)zeq f(13i,2i),則|z|_.答案eq r(2)解析|z|eq blc|rc|(avs4alco1(f(13i,2i)eq f(|13i|,|2i|)eq f(r(10),r(5)eq r(2).解決復(fù)數(shù)概念問題的方法及注意事項(xiàng)(1)求一個(gè)復(fù)數(shù)的實(shí)部與虛部,只需將已知的復(fù)數(shù)化為代數(shù)形式zabi(a,bR),則該復(fù)數(shù)的實(shí)部為a,虛部為b.(2)求一個(gè)復(fù)數(shù)的共軛復(fù)數(shù),只需將此復(fù)數(shù)整理成標(biāo)準(zhǔn)的代數(shù)形式,實(shí)部不變,虛部變?yōu)橄喾磾?shù),即得原復(fù)數(shù)的共軛復(fù)
15、數(shù)復(fù)數(shù)z1abi與z2cdi共軛ac,bd(a,b,c,dR)考點(diǎn)復(fù)數(shù)的運(yùn)算例4若z(1i)2i,則z()A1iB1iC1iD1i答案D解析由題意得zeq f(2i,1i)eq f(2i1i,1i1i)1i.故選D.例5已知復(fù)數(shù)z的共軛復(fù)數(shù)為eq o(z,sup6(),若eq o(z,sup6()(1i)2i(i為虛數(shù)單位),則z()AiBi1Ci1Di答案C解析由已知可得eq o(z,sup6()eq f(2i,1i)eq f(2i1i,1i1i)1i,則z1i.故選C.例6已知復(fù)數(shù)z滿足z|z|1i,則z()AiBiC1iD1i答案B解析解法一:設(shè)zabi(a,bR),則z|z|aeq r
16、(a2b2)bi1i,所以eq blcrc (avs4alco1(ar(a2b2)1,,b1,)解得eq blcrc (avs4alco1(a0,,b1,)所以zi.故選B.解法二:把各選項(xiàng)代入驗(yàn)證,知選項(xiàng)B滿足題意4.若復(fù)數(shù)z滿足2zeq o(z,sup6()32i,其中i為虛數(shù)單位,則z等于()A12iB12iC12iD12i答案B解析設(shè)zabi(a,bR),則eq o(z,sup6()abi,2(abi)(abi)32i,整理得3abi32i,eq blcrc (avs4alco1(3a3,,b2,)解得eq blcrc (avs4alco1(a1,,b2,)z12i.故選B.5若z43
17、i,則eq f(o(z,sup6(),|z|)等于()A1B1C.eq f(4,5)eq f(3,5)iDeq f(4,5)eq f(3,5)i答案D解析z43i,|z|5,eq f(o(z,sup6(),|z|)eq f(4,5)eq f(3,5)i.故選D.6若復(fù)數(shù)z滿足(34i)z|43i|,則z的虛部為()A4Beq f(4,5)C4Deq f(4,5)答案D解析設(shè)zabi,故(34i)(abi)3a3bi4ai4b|43i|,所以eq blcrc (avs4alco1(3b4a0,,3a4b5,)解得beq f(4,5).故選D.(1)復(fù)數(shù)的加、減、乘法:復(fù)數(shù)的加、減、乘法類似于多項(xiàng)
18、式的運(yùn)算,可將含有虛數(shù)單位i的看作一類同類項(xiàng),不含i的看作另一類同類項(xiàng),分別合并即可(2)復(fù)數(shù)的除法:除法的關(guān)鍵是分子分母同乘以分母的共軛復(fù)數(shù),使分母實(shí)數(shù)化,解題時(shí)要注意把i的冪寫成最簡(jiǎn)形式考點(diǎn)復(fù)數(shù)的幾何意義例7設(shè)(1i)x1yi,其中x,y是實(shí)數(shù),則xyi在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于()A第一象限B第二象限C第三象限D(zhuǎn)第四象限答案D解析x,y是實(shí)數(shù),(1i)xxxi1yi,eq blcrc (avs4alco1(x1,,xy,)解得eq blcrc (avs4alco1(x1,,y1,)xyi在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)為(1,1),位于第四象限故選D.例8(2019全國(guó)卷)設(shè)復(fù)數(shù)z滿足|zi|1,z在
19、復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為(x,y),則()A(x1)2y21B(x1)2y21Cx2(y1)21Dx2(y1)21答案C解析由已知條件,可得zxyi.|zi|1,|xyii|1,x2(y1)21.故選C.例9(2020全國(guó)卷)設(shè)復(fù)數(shù)z1,z2滿足|z1|z2|2,z1z2eq r(3)i,則|z1z2|_.答案2eq r(3)解析解法一:設(shè)z1abi,z2cdi,|z1|z2|2,a2b24,c2d24,z1z2abicdieq r(3)i,aceq r(3),bd1,(ac)2(bd)2a2c22acb2d22bd4,2ac2bd4,z1z2abi(cdi)ac(bd)i,|z1z2|eq r(a
20、c2bd2)eq r(a2c22acb2d22bd)eq r(a2b2c2d22ac2bd)eq r(444)2eq r(3).解法二:|z1|z2|2,可設(shè)z12cos2sini,z22cos2sini,z1z22(coscos)2(sinsin)ieq r(3)i,eq blcrc (avs4alco1(2coscosr(3),,2sinsin1.)兩式平方作和,得4(22coscos2sinsin)4,化簡(jiǎn)得coscossinsineq f(1,2).|z1z2|2(coscos)2(sinsin)i|eq r(4coscos24sinsin2)eq r(88coscossinsin)e
21、q r(84)2eq r(3).7.(2021武漢模擬)已知i是虛數(shù)單位,復(fù)數(shù)m1(2m)i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)m的取值范圍是()A(,1)B(1,2)C(2,)D(,1)(2,)答案A解析因?yàn)閺?fù)數(shù)m1(2m)i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,所以eq blcrc (avs4alco1(m10,)解得m1.所以實(shí)數(shù)m的取值范圍為(,1)故選A.8(2021福州質(zhì)檢)設(shè)復(fù)數(shù)z滿足|z1|zi|,z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為(x,y),則()Ax0By0Cxy0Dxy0答案D解析復(fù)數(shù)z滿足|z1|zi|,eq r(x12y2)eq r(x2y12),化簡(jiǎn),得xy0.故選D.9若虛數(shù)(x2)
22、yi(x,yR)的模為eq r(3),則eq f(y,x)的最大值是()A.eq f(r(3),2)Beq f(r(3),3)Ceq f(1,2)Deq r(3)答案D解析因?yàn)?x2)yi是虛數(shù),所以y0.又因?yàn)閨(x2)yi|eq r(3),所以(x2)2y23(y0)因?yàn)閑q f(y,x)是復(fù)數(shù)xyi對(duì)應(yīng)的點(diǎn)與原點(diǎn)連線的斜率,如圖所示,所以eq blc(rc)(avs4alco1(f(y,x)maxtanAOBeq r(3),所以eq f(y,x)的最大值為eq r(3).故選D.準(zhǔn)確理解復(fù)數(shù)的幾何意義(1)根據(jù)復(fù)數(shù)與平面向量的對(duì)應(yīng)關(guān)系,可知當(dāng)平面向量的起點(diǎn)為原點(diǎn)時(shí),向量的終點(diǎn)對(duì)應(yīng)的復(fù)數(shù)即
23、向量對(duì)應(yīng)的復(fù)數(shù)反之,復(fù)數(shù)對(duì)應(yīng)的點(diǎn)確定后,從原點(diǎn)引出的指向該點(diǎn)的有向線段所表示的向量即復(fù)數(shù)對(duì)應(yīng)的向量(2)解決復(fù)數(shù)與平面向量一一對(duì)應(yīng)的題目時(shí),一般根據(jù)復(fù)數(shù)與復(fù)平面內(nèi)的點(diǎn)一一對(duì)應(yīng),實(shí)現(xiàn)復(fù)數(shù)、復(fù)平面內(nèi)的點(diǎn)、向量之間的轉(zhuǎn)化二、核心素養(yǎng)提升例1(多選)已知復(fù)數(shù)z1cos2isin2eq blc(rc)(avs4alco1(f(,2)f(,2)(其中i為虛數(shù)單位),下列說法正確的是()A復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)可能落在第二象限Bz可能為實(shí)數(shù)C|z|2cosD.eq f(1,z)的實(shí)部為eq f(1,2)答案BCD解析因?yàn)閑q f(,2)eq f(,2),所以2,所以1cos21,所以01cos22,故A錯(cuò)
24、誤;當(dāng)sin20,0eq blc(rc)(avs4alco1(f(,2),f(,2)時(shí),復(fù)數(shù)z是實(shí)數(shù),故B正確;|z| eq r(1cos22sin22)eq r(22cos2)2cos,故C正確;eq f(1,z)eq f(1,1cos2isin2)eq f(1cos2isin2,1cos2isin21cos2isin2)eq f(1cos2isin2,22cos2),eq f(1,z)的實(shí)部是eq f(1cos2,22cos2)eq f(1,2),故D正確故選BCD.例2在復(fù)平面內(nèi),滿足條件|z4i|2|zi|的復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)的軌跡是()A直線B圓C橢圓D雙曲線答案B解析設(shè)復(fù)數(shù)zxyi(x
25、R,yR),則|z4i|x(y4)i|eq r(x2y42),|zi|x(y1)i|eq r(x2y12),結(jié)合題意有x2(y4)24x24(y1)2,整理可得x2y24.故選B.準(zhǔn)確理解復(fù)數(shù)的幾何意義(1)復(fù)數(shù)z、復(fù)平面內(nèi)的點(diǎn)Z及向量eq o(OZ,sup6()相互聯(lián)系,即zabi(a,bR)一一對(duì)應(yīng)Z(a,b)一一對(duì)應(yīng)eq o(OZ,sup6().(2)由于復(fù)數(shù)、點(diǎn)、向量之間建立了一一對(duì)應(yīng)的關(guān)系,因此可把復(fù)數(shù)、向量與解析幾何聯(lián)系在一起,解題時(shí)可運(yùn)用數(shù)形結(jié)合的方法,使問題的解決更加直觀(3)進(jìn)行簡(jiǎn)單的復(fù)數(shù)運(yùn)算,將復(fù)數(shù)化為標(biāo)準(zhǔn)的代數(shù)形式(4)把復(fù)數(shù)問題轉(zhuǎn)化為復(fù)平面內(nèi)的點(diǎn)之間的關(guān)系,依據(jù)是復(fù)數(shù)a
26、bi(a,bR)與復(fù)平面內(nèi)的點(diǎn)(a,b)一一對(duì)應(yīng)課時(shí)作業(yè)一、單項(xiàng)選擇題1復(fù)數(shù)eq f(5,i2)的共軛復(fù)數(shù)是()A2iB2iC2iD2i答案B解析因?yàn)閑q f(5,i2)eq f(5i2,i2i2)2i,所以復(fù)數(shù)eq f(5,i2)的共軛復(fù)數(shù)是2i.故選B.2(2021廣東珠海高三模擬)已知i為虛數(shù)單位,若復(fù)數(shù)zeq f(2i,i)ai(aR)為實(shí)數(shù),則a()A2B1C1D2答案D解析因?yàn)閦eq f(2ii2,i2)ai12iai1(a2)i為實(shí)數(shù),所以a2.故選D.3(2021福建泉州高三模擬)法國(guó)數(shù)學(xué)家棣莫弗(16671754)發(fā)現(xiàn)的公式(cosxisinx)ncosnxisinnx推動(dòng)了
27、復(fù)數(shù)領(lǐng)域的研究根據(jù)該公式,可得eq blc(rc)(avs4alco1(cosf(,8)isinf(,8)4()A1BiC1Di答案B解析根據(jù)公式得eq blc(rc)(avs4alco1(cosf(,8)isinf(,8)4coseq f(,2)isineq f(,2)i.故選B.4(2021江蘇常州高三一模)已知z12i,z213i,則復(fù)數(shù)eq f(i,z1)eq f(z2,5)的虛部為()A1B1C2D2答案A解析由題意,復(fù)數(shù)z12i,z213i,可得eq f(i,z1)eq f(z2,5)eq f(i,2i)eq f(13i,5)eq f(i2i,5)eq f(13i,5)i,可得復(fù)數(shù)
28、eq f(i,z1)eq f(z2,5)的虛部為1.故選A.5已知復(fù)數(shù)zeq f(2i,1i),則下列說法正確的是()Az的模為eq f(r(10),2)Bz的虛部為eq f(3,2)iCz的共軛復(fù)數(shù)為eq f(1,2)eq f(3,2)iDz的共軛復(fù)數(shù)表示的點(diǎn)在第四象限答案A解析zeq f(2i,1i)eq f(2i1i,1i1i)eq f(213i,2)eq f(1,2)eq f(3,2)i.z的模為 eq r(f(1,4)f(9,4)eq f(r(10),2),故A正確;z的虛部為eq f(3,2),故B錯(cuò)誤;z的共軛復(fù)數(shù)為eq f(1,2)eq f(3,2)i,故C錯(cuò)誤;z的共軛復(fù)數(shù)表
29、示的點(diǎn)為eq blc(rc)(avs4alco1(f(1,2),f(3,2),在第一象限,故D錯(cuò)誤故選A.6(2021江門市培英高級(jí)中學(xué)高三模擬)已知i是虛數(shù)單位,若復(fù)數(shù)z滿足eq f(z,1i)2i,則|z|()A.eq r(2)B2C2eq r(2)D4答案C解析由eq f(z,1i)2i,得z2i(1i)22i,則|z|eq r(44)2eq r(2).故選C.7復(fù)數(shù)z滿足等式(2i)zi,則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限是()A第一象限B第二象限C第三象限D(zhuǎn)第四象限答案B解析因?yàn)?2i)zi,所以zeq f(i,2i)eq f(i2i,2i2i)eq f(12i,5)eq f(1,
30、5)eq f(2,5)i,故復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為eq blc(rc)(avs4alco1(f(1,5),f(2,5),在第二象限故選B.8(2021重慶高三三模)若復(fù)數(shù)z滿足|z1i|12i|,其中i為虛數(shù)單位,則z對(duì)應(yīng)的點(diǎn)(x,y)滿足方程()A(x1)2(y1)2eq r(5)B(x1)2(y1)25C(x1)2(y1)2eq r(5)D(x1)2(y1)25答案B解析由題意得zxyi(x,yR),代入|z1i|12i|,得(x1)2(y1)25.故選B.二、多項(xiàng)選擇題9設(shè)z為復(fù)數(shù),在復(fù)平面內(nèi)z,eq o(z,sup6()對(duì)應(yīng)的點(diǎn)分別為P,Q,坐標(biāo)原點(diǎn)為O,則下列命題中正確的有()A
31、當(dāng)z為純虛數(shù)時(shí),P,O,Q三點(diǎn)共線B當(dāng)z1i時(shí),POQ為等腰直角三角形C對(duì)任意復(fù)數(shù)z,eq o(OP,sup6()eq o(OQ,sup6()D當(dāng)z為實(shí)數(shù)時(shí),eq o(OP,sup6()eq o(OQ,sup6()答案ABD解析設(shè)zabi(a,bR),則eq o(z,sup6()abi.對(duì)于A,當(dāng)z為純虛數(shù)時(shí),zbi(b0),eq o(z,sup6()bi對(duì)應(yīng)的點(diǎn)分別為P(0,b),Q(0,b),O,P,Q均在y軸上,所以P,O,Q三點(diǎn)共線,故A正確;對(duì)于B,當(dāng)z1i時(shí),eq o(z,sup6()1i,所以P(1,1),Q(1,1),所以|OP|OQ|eq r(2),而|PQ|2,所以|OP|
32、2|OQ|2|PQ|2,所以POQ為等腰直角三角形,故B正確;對(duì)于C,eq o(OP,sup6()(a,b),eq o(OQ,sup6()(a,b),當(dāng)b0時(shí),eq o(OP,sup6()eq o(OQ,sup6()(a,0),故C錯(cuò)誤,D正確故選ABD.10設(shè)復(fù)數(shù)z的共軛復(fù)數(shù)為eq o(z,sup6(),i為虛數(shù)單位,則下列命題正確的是()A若zeq o(z,sup6()0,則z0B若zeq o(z,sup6()R,則zRC若zcoseq f(,5)isineq f(2,5),則|z|1D若|zi|1,則|z|的最大值為2答案ABD解析若zeq o(z,sup6()0,即|z|20,|z|0
33、,則z0,A正確;若zeq o(z,sup6()R,即z的虛部為0,則zR,B正確;若zcoseq f(,5)isineq f(2,5),則|z|eq r(cos2f(,5)sin2f(2,5)1,C錯(cuò)誤;若|zi|1,設(shè)zxyi(x,yR),即x2(y1)21,則|z|表示圓上的點(diǎn)到原點(diǎn)的距離,其最大值為2,D正確故選ABD.三、填空題11若復(fù)數(shù)m3(m29)i0,則實(shí)數(shù)m的值為_答案3解析m3(m29)i0,eq blcrc (avs4alco1(m290,,m30,)解得m3.12(2021安徽師范大學(xué)附屬中學(xué)高三模擬)若復(fù)數(shù)z在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)的坐標(biāo)為eq blc(rc)(avs4a
34、lco1(f(1,2),f(r(3),2),則z2021eq o(z,sup6()_.答案0解析由已知可得zeq f(1,2)eq f(r(3),2)i,則z2eq blc(rc)(avs4alco1(f(1,2)f(r(3),2)i)2eq f(1,4)eq f(r(3),2)ieq f(3,4)eq f(1,2)eq f(r(3),2)i,所以z3eq blc(rc)(avs4alco1(f(1,2)f(r(3),2)i)eq blc(rc)(avs4alco1(f(1,2)f(r(3),2)i)1,所以z2021eq o(z,sup6()z36732eq o(z,sup6()z2eq o
35、(z,sup6()eq blc(rc)(avs4alco1(f(1,2)f(r(3),2)i)eq blc(rc)(avs4alco1(f(1,2)f(r(3),2)i)0.13在復(fù)平面內(nèi),設(shè)點(diǎn)A,P所對(duì)應(yīng)的復(fù)數(shù)分別為i,coseq blc(rc)(avs4alco1(2tf(,3)isineq blc(rc)(avs4alco1(2tf(,3)(i為虛數(shù)單位),則當(dāng)t由eq f(,12)連續(xù)變到eq f(,4)時(shí),向量eq o(AP,sup6()所掃過的圖形區(qū)域的面積是_答案eq f(,6)解析由題意可得,點(diǎn)P在單位圓上,點(diǎn)A的坐標(biāo)為(0,),如圖當(dāng)teq f(,12)時(shí),點(diǎn)P的坐標(biāo)為P1eq blc(rc)(avs4alco1(f(r(3),2),f(1,2),當(dāng)teq f(,4)時(shí),點(diǎn)P的坐標(biāo)為P2eq blc(rc)(avs4alco1(f(r(3),2),f(1,2),向量eq o(AP,sup6()所掃過的圖形區(qū)域的面積是AP1P2的面積與弓形的面積之和由于P1,P2關(guān)于實(shí)軸對(duì)稱,所以AP1P2的面積等于OP1P2的面積(因?yàn)檫@兩個(gè)三角形同底且等高),故向量eq o(AP,sup6()所掃過的圖形區(qū)域的面積是扇形P1OP2的面積
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨床綜合考試題
- 變電檢修工專業(yè)理論習(xí)題(附答案)
- 用戶體與設(shè)計(jì)人員的溝通橋梁-用戶體驗(yàn)
- 現(xiàn)代藝術(shù)畫廊的數(shù)字化運(yùn)營(yíng)與管理
- 靈活的財(cái)務(wù)管理在科技類公司老房翻新項(xiàng)目中的關(guān)鍵性角色
- 建筑消防工程應(yīng)急預(yù)案演練考核試卷
- 外匯交易員的職業(yè)素養(yǎng)培養(yǎng)考核試卷
- 企業(yè)估值方法與案例分析考核試卷
- 2025-2030年文化主題文具禮盒企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報(bào)告
- 2025-2030年在線心理咨詢預(yù)約系統(tǒng)行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 通用電子嘉賓禮薄
- 小學(xué)體育《運(yùn)動(dòng)前后的飲食衛(wèi)生》課件
- 薪酬專員崗位月度KPI績(jī)效考核表
- 2015奔馳c180l c200l c3電路圖9129座椅電氣系統(tǒng)
- 充電站監(jiān)理規(guī)劃
- 浙江省杭州市2022年中考語文模擬試卷24
- 通快激光發(fā)生器trucontrol操作手冊(cè)
- GB/T 28419-2012風(fēng)沙源區(qū)草原沙化遙感監(jiān)測(cè)技術(shù)導(dǎo)則
- GB/T 22077-2008架空導(dǎo)線蠕變?cè)囼?yàn)方法
- DDI領(lǐng)導(dǎo)力-高績(jī)效輔導(dǎo)課件
- 水泥罐安裝與拆除專項(xiàng)施工方案
評(píng)論
0/150
提交評(píng)論