![經(jīng)管學會網(wǎng)盤概統(tǒng)lecture_第1頁](http://file4.renrendoc.com/view/1d19ca87d734984e07a48ff0d8d3a9a4/1d19ca87d734984e07a48ff0d8d3a9a41.gif)
![經(jīng)管學會網(wǎng)盤概統(tǒng)lecture_第2頁](http://file4.renrendoc.com/view/1d19ca87d734984e07a48ff0d8d3a9a4/1d19ca87d734984e07a48ff0d8d3a9a42.gif)
![經(jīng)管學會網(wǎng)盤概統(tǒng)lecture_第3頁](http://file4.renrendoc.com/view/1d19ca87d734984e07a48ff0d8d3a9a4/1d19ca87d734984e07a48ff0d8d3a9a43.gif)
![經(jīng)管學會網(wǎng)盤概統(tǒng)lecture_第4頁](http://file4.renrendoc.com/view/1d19ca87d734984e07a48ff0d8d3a9a4/1d19ca87d734984e07a48ff0d8d3a9a44.gif)
![經(jīng)管學會網(wǎng)盤概統(tǒng)lecture_第5頁](http://file4.renrendoc.com/view/1d19ca87d734984e07a48ff0d8d3a9a4/1d19ca87d734984e07a48ff0d8d3a9a45.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、Lecture 12The Normal DistributionThe Central Limit TheoremThe Normal Distribution The normal distribution is the single most important probability distribution.Continuous DistributionMany real -life data sets look like this one, the name given to this general shape is “normal” Normal distributionImp
2、ortance of Normal Distribution1. Describes Many Random Processes or Continuous Phenomena2. The central limit theorem. If a large random sample is taken from some distribution, then even though this distribution is not itself approximately normal, many important functions of the observations in the s
3、ample will have distributions which are approximately normal.3. Basis for Classical Statistical InferenceDefinition of the Normal DistributionA random variable X has a normal distribution with mean and varianceif X has a continuous distribution with p.d.f. The Shape of the Normal DistributionThe p.d
4、.f. of a normal distribution is symmetric with respect to the point x=m. Linear TransformationTheorem . If X has a normal distribution with mean and variance and if Y=aX+b, where a and b are given constants and , then Y has a normal distribution with mean and variance .The Standard Normal Distributi
5、onThe normal distribution with mean 0 and variance 1 is called the standard normal distribution. The p.d.f. of Z that follows the standard normal distribution is denoted by the symbol , and the d.f. is denoted by the symbol .Normal Distribution ProbabilityProbability is area under curve!Infinite Num
6、ber of TablesNormal distributions differ by mean & standard deviation.Each distribution would require its own table.Thats an infinite number!Standardize the Normal Distribution One table!Normal DistributionStandardized Normal DistributionStandardizing ExampleNormal DistributionStandardized Normal Di
7、stributionNormal Probability TablesExample: P(Z 2.00) = .9773 The Standardized Normal table in the textbook (Appendix) gives the value of for Z02.00.9773Notice thatSo values of can be derived for z0. If a random variable X has a normal distribution with mean and variance , then the variable has a st
8、andard normal distribution. So probabilities for any normal distribution can be derived.Normal Distribution Thinking ChallengeYou work in Quality Control for GE. Light bulb life has a normal distribution with = 2000 hours & = 200 hours. Whats the probability that a bulb will lastA. between 2000 & 24
9、00 hours?B. less than 1470 hours?Solution* P(2000 X 2400)Normal Distribution .4773Standardized Normal DistributionSolution* P(X 1470)Normal Distribution.4960 .0040.5000Standardized Normal DistributionFinding X Values for Known ProbabilitiesNormal DistributionStandardized Normal Distribution .1217 .1
10、217Shaded areas exaggeratedProperties of the Normal DistributionThe area under the part of a normal curve that lies within 1standard deviation of the mean is approximately 0.68, or 68%;within 2 standard deviations, about 0.95, or 95%; and within 3standard deviations, about 0.997, or 99.7%.Linear Com
11、binations of Normally Distributed VariablesTheorem. If the random variables X1,.,Xk are independent and if Xi has a normal distribution with mean and variance (i=1,.,k), then the sum X1+.+Xk has a normal distribution with mean and variance .Corollary 1. If the random variables X1,.,Xk are independen
12、t, if Xi has a normal distribution with mean and variance (i=1,.,k), and if a1,.,ak and b are constants for which at least one of the values a1,.,ak is different from 0, then the variable a1X1+.+akXk+b has a normal distribution with mean and variance .Corollary 2. Suppose that the random variables X
13、1,.,Xn form a random sample from a normal distribution with and variance , and let denote the sample mean. Then has a normal distribution with mean and variance .ExampleSuppose that the heights, in inches, of the women in a certain population follow a normal distribution with mean 65 and standard de
14、viation 1, and that the heights of the men follow a normal distribution with mean 68 and standard deviation 2. Suppose that one woman is selected at random, and independently, one man is selected at random. What is the probability that the woman will be taller than the man?Solution: Let W denote the
15、 height of the selected woman, and let M denote the height of the selected man. Then the difference W-M has a normal distribution with mean 65-68=-3 and variance LetThen Z has a standard normal distribution. SoExample: Determining a Sample SizeSuppose that a random sample of size n is to be taken fr
16、om a normal distribution with mean and variance 9. What is the miminum value of n for which Solution: The sample mean has a normal distribution with mean and standard deviationLet , then Z has a standard normal distribution, and The sample size must be at least 35.28統(tǒng)計分析的任務通過樣本的統(tǒng)計量來了解總體的參數(shù)??傮w參數(shù)p樣本統(tǒng)計
17、量為什么需要抽樣? 1)總體無法得到。例:光臨麥當勞的所有顧客(無限總體)。 2)時間和成本不允許。例:美國總統(tǒng)選舉的民意測驗。 3)實驗具有破壞性。例:測量產(chǎn)品的壽命。抽取的樣本不同,那么算出的平均值也不同 抽樣分布抽取的樣本不同,那么算出的平均值也不同。需要了解樣本平均值的分布,即它的抽樣分布。樣本均值的抽樣分布樣本均值的抽樣分布計算出每個樣本的均值,如下表。并給出樣本均值的抽樣分布樣本均值的分布和總體的分布36關于抽樣分布的神奇現(xiàn)象對于簡單隨機抽樣不管總體的分布是什么形態(tài),設它的均值是,方差是2。只要樣本的容量n很大,那么樣本的均值總是近似服從正態(tài)分布(中心極限定理)If a large
18、 random sample is taken from any distribution with mean and variance ,regardless of the distributional form, The distribution of the sum will be approximately a normal distribution with mean and variance .The Central Limit TheoremExample: Tossing a CoinSuppose a fair coin is tossed 900 times. What is the probability of obtaining more than 495 heads?For i=1,.,900, let Xi=1 if a head is obtained on the ith toss and let Xi=0 otherwise. Then E(Xi)=1/2 and Var(Xi)=1/4. From the central limit theorem, the total number of heads will be approximately a normal distribution with mean (900)(1/2)=45
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球新能源電池CCS集成母排行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球無線藍牙肉類溫度計行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球血栓彈力圖檢測試劑盒行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球核電站管道系統(tǒng)行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球環(huán)氧干式變壓器行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國超聲軟組織手術刀行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國一次性3D儲液袋行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球聚氨酯泡沫開孔劑行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國家具彈性帶行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025【合同范本】服裝專賣店加盟合同
- 2024年湖南高速鐵路職業(yè)技術學院高職單招數(shù)學歷年參考題庫含答案解析
- 上海鐵路局招聘筆試沖刺題2025
- 國旗班指揮刀訓練動作要領
- 春季安全開學第一課
- 植物芳香油的提取 植物有效成分的提取教學課件
- 肖像繪畫市場發(fā)展現(xiàn)狀調(diào)查及供需格局分析預測報告
- 2021-2022學年遼寧省重點高中協(xié)作校高一上學期期末語文試題
- 同等學力英語申碩考試詞匯(第六版大綱)電子版
- 墓地個人協(xié)議合同模板
- 2024年部編版初中語文各年級教師用書七年級(上冊)
- 中日合同范本
評論
0/150
提交評論