版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、高考前數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 1. 對(duì)于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無序性”。中元素各表示什么?注重借助于數(shù)軸和文氏圖解集合問題??占且磺屑系淖蛹?,是一切非空集合的真子集。 3. 注意下列性質(zhì):(3)德摩根定律: 4. 你會(huì)用補(bǔ)集思想解決問題嗎?(排除法、間接法) 6. 命題的四種形式及其相互關(guān)系是什么?(互為逆否關(guān)系的命題是等價(jià)命題。)原命題與逆否命題同真、同假;逆命題與否命題同真同假。 7. 對(duì)映射的概念了解嗎?映射f:AB,是否注意到A中元素的任意性和B中與之對(duì)應(yīng)元素的唯一性,哪幾種對(duì)應(yīng)能構(gòu)成映射?(一對(duì)一,多對(duì)一,允許B中有元素?zé)o原象。) 8. 函數(shù)的三要素是
2、什么?如何比較兩個(gè)函數(shù)是否相同?(定義域、對(duì)應(yīng)法則、值域) 9. 求函數(shù)的定義域有哪些常見類型? 10. 如何求復(fù)合函數(shù)的定義域?義域是_。 11. 求一個(gè)函數(shù)的解析式或一個(gè)函數(shù)的反函數(shù)時(shí),注明函數(shù)的定義域了嗎? 12. 反函數(shù)存在的條件是什么?(一一對(duì)應(yīng)函數(shù))求反函數(shù)的步驟掌握了嗎?(反解x;互換x、y;注明定義域) 13. 反函數(shù)的性質(zhì)有哪些?互為反函數(shù)的圖象關(guān)于直線yx對(duì)稱;保存了原來函數(shù)的單調(diào)性、奇函數(shù)性; 14. 如何用定義證明函數(shù)的單調(diào)性?(取值、作差、判正負(fù))如何判斷復(fù)合函數(shù)的單調(diào)性?) 15. 如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性?值是() A. 0B. 1C. 2D. 3a的最大值為
3、3) 16. 函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?(f(x)定義域關(guān)于原點(diǎn)對(duì)稱)注意如下結(jié)論:(1)在公共定義域內(nèi):兩個(gè)奇函數(shù)的乘積是偶函數(shù);兩個(gè)偶函數(shù)的乘積是偶函數(shù);一個(gè)偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。 17. 你熟悉周期函數(shù)的定義嗎?函數(shù),T是一個(gè)周期。)如: 18. 你掌握常用的圖象變換了嗎?注意如下“翻折”變換: 19. 你熟練掌握常用函數(shù)的圖象和性質(zhì)了嗎?的雙曲線。應(yīng)用:“三個(gè)二次”(二次函數(shù)、二次方程、二次不等式)的關(guān)系二次方程求閉區(qū)間m,n上的最值。求區(qū)間定(動(dòng)),對(duì)稱軸動(dòng)(定)的最值問題。一元二次方程根的分布問題。由圖象記性質(zhì)?。ㄗ⒁獾讛?shù)的限定?。├盟膯握{(diào)性求最
4、值與利用均值不等式求最值的區(qū)別是什么? 20. 你在基本運(yùn)算上常出現(xiàn)錯(cuò)誤嗎? 21. 如何解抽象函數(shù)問題?(賦值法、結(jié)構(gòu)變換法) 22. 掌握求函數(shù)值域的常用方法了嗎?(二次函數(shù)法(配方法),反函數(shù)法,換元法,均值定理法,判別式法,利用函數(shù)單調(diào)性法,導(dǎo)數(shù)法等。)如求下列函數(shù)的最值: 23. 你記得弧度的定義嗎?能寫出圓心角為,半徑為R的弧長公式和扇形面積公式嗎? 24. 熟記三角函數(shù)的定義,單位圓中三角函數(shù)線的定義 25. 你能迅速畫出正弦、余弦、正切函數(shù)的圖象嗎?并由圖象寫出單調(diào)區(qū)間、對(duì)稱點(diǎn)、對(duì)稱軸嗎?(x,y)作圖象。 27. 在三角函數(shù)中求一個(gè)角時(shí)要注意兩個(gè)方面先求出某一個(gè)三角函數(shù)值,再
5、判定角的范圍。 28. 在解含有正、余弦函數(shù)的問題時(shí),你注意(到)運(yùn)用函數(shù)的有界性了嗎? 29. 熟練掌握三角函數(shù)圖象變換了嗎?(平移變換、伸縮變換)平移公式:圖象? 30. 熟練掌握同角三角函數(shù)關(guān)系和誘導(dǎo)公式了嗎?“奇”、“偶”指k取奇、偶數(shù)。 A. 正值或負(fù)值B. 負(fù)值C. 非負(fù)值D. 正值 31. 熟練掌握兩角和、差、倍、降冪公式及其逆向應(yīng)用了嗎?理解公式之間的聯(lián)系:應(yīng)用以上公式對(duì)三角函數(shù)式化簡。(化簡要求:項(xiàng)數(shù)最少、函數(shù)種類最少,分母中不含三角函數(shù),能求值,盡可能求值。)具體方法:(2)名的變換:化弦或化切(3)次數(shù)的變換:升、降冪公式(4)形的變換:統(tǒng)一函數(shù)形式,注意運(yùn)用代數(shù)運(yùn)算。
6、32. 正、余弦定理的各種表達(dá)形式你還記得嗎?如何實(shí)現(xiàn)邊、角轉(zhuǎn)化,而解斜三角形?(應(yīng)用:已知兩邊一夾角求第三邊;已知三邊求角。) 33. 用反三角函數(shù)表示角時(shí)要注意角的范圍。 34. 不等式的性質(zhì)有哪些? 35. 利用均值不等式:值?(一正、二定、三相等)注意如下結(jié)論: 36. 不等式證明的基本方法都掌握了嗎?(比較法、分析法、綜合法、數(shù)學(xué)歸納法等)并注意簡單放縮法的應(yīng)用。(移項(xiàng)通分,分子分母因式分解,x的系數(shù)變?yōu)?,穿軸法解得結(jié)果。) 38. 用“穿軸法”解高次不等式“奇穿,偶切”,從最大根的右上方開始 39. 解含有參數(shù)的不等式要注意對(duì)字母參數(shù)的討論 40. 對(duì)含有兩個(gè)絕對(duì)值的不等式如何去
7、解?(找零點(diǎn),分段討論,去掉絕對(duì)值符號(hào),最后取各段的并集。)證明:(按不等號(hào)方向放縮) 42. 不等式恒成立問題,常用的處理方式是什么?(可轉(zhuǎn)化為最值問題,或“”問題) 43. 等差數(shù)列的定義與性質(zhì)0的二次函數(shù))項(xiàng),即: 44. 等比數(shù)列的定義與性質(zhì) 46. 你熟悉求數(shù)列通項(xiàng)公式的常用方法嗎?例如:(1)求差(商)法解:練習(xí)(2)疊乘法解:(3)等差型遞推公式練習(xí)(4)等比型遞推公式(5)倒數(shù)法 47. 你熟悉求數(shù)列前n項(xiàng)和的常用方法嗎?例如:(1)裂項(xiàng)法:把數(shù)列各項(xiàng)拆成兩項(xiàng)或多項(xiàng)之和,使之出現(xiàn)成對(duì)互為相反數(shù)的項(xiàng)。解:(2)錯(cuò)位相減法:(3)倒序相加法:把數(shù)列的各項(xiàng)順序倒寫,再與原來順序的數(shù)列
8、相加。 48. 你知道儲(chǔ)蓄、貸款問題嗎?零存整取儲(chǔ)蓄(單利)本利和計(jì)算模型:若每期存入本金p元,每期利率為r,n期后,本利和為:若按復(fù)利,如貸款問題按揭貸款的每期還款計(jì)算模型(按揭貸款分期等額歸還本息的借款種類)若貸款(向銀行借款)p元,采用分期等額還款方式,從借款日算起,一期(如一年)后為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復(fù)利),那么每期應(yīng)還x元,滿足 p貸款數(shù),r利率,n還款期數(shù) 49. 解排列、組合問題的依據(jù)是:分類相加,分步相乘,有序排列,無序組合。(2)排列:從n個(gè)不同元素中,任取m(mn)個(gè)元素,按照一定的順序排成一(3)組合:從n個(gè)不同元素中任取m(mn)個(gè)
9、元素并組成一組,叫做從n個(gè)不 50. 解排列與組合問題的規(guī)律是:相鄰問題捆綁法;相間隔問題插空法;定位問題優(yōu)先法;多元問題分類法;至多至少問題間接法;相同元素分組可采用隔板法,數(shù)量不大時(shí)可以逐一排出結(jié)果。如:學(xué)號(hào)為1,2,3,4的四名學(xué)生的考試成績則這四位同學(xué)考試成績的所有可能情況是() A. 24B. 15C. 12D. 10解析:可分成兩類:(2)中間兩個(gè)分?jǐn)?shù)相等相同兩數(shù)分別取90,91,92,對(duì)應(yīng)的排列可以數(shù)出來,分別有3,4,3種,有10種。共有51015(種)情況 51. 二項(xiàng)式定理性質(zhì):(3)最值:n為偶數(shù)時(shí),n1為奇數(shù),中間一項(xiàng)的二項(xiàng)式系數(shù)最大且為第表示) 52. 你對(duì)隨機(jī)事件之
10、間的關(guān)系熟悉嗎?的和(并)。(5)互斥事件(互不相容事件):“A與B不能同時(shí)發(fā)生”叫做A、B互斥。(6)對(duì)立事件(互逆事件):(7)獨(dú)立事件:A發(fā)生與否對(duì)B發(fā)生的概率沒有影響,這樣的兩個(gè)事件叫做相互獨(dú)立事件。 53. 對(duì)某一事件概率的求法:分清所求的是:(1)等可能事件的概率(常采用排列組合的方法,即(5)如果在一次試驗(yàn)中A發(fā)生的概率是p,那么在n次獨(dú)立重復(fù)試驗(yàn)中A恰好發(fā)生如:設(shè)10件產(chǎn)品中有4件次品,6件正品,求下列事件的概率。(1)從中任取2件都是次品;(2)從中任取5件恰有2件次品;(3)從中有放回地任取3件至少有2件次品;解析:有放回地抽取3次(每次抽1件),n103而至少有2件次品為
11、“恰有2次品”和“三件都是次品”(4)從中依次取5件恰有2件次品。解析:一件一件抽?。ㄓ许樞颍┓智澹?)、(2)是組合問題,(3)是可重復(fù)排列問題,(4)是無重復(fù)排列問題。 54. 抽樣方法主要有:簡單隨機(jī)抽樣(抽簽法、隨機(jī)數(shù)表法)常常用于總體個(gè)數(shù)較少時(shí),它的特征是從總體中逐個(gè)抽?。幌到y(tǒng)抽樣,常用于總體個(gè)數(shù)較多時(shí),它的主要特征是均衡成若干部分,每部分只取一個(gè);分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個(gè)個(gè)體被抽到的概率相等,體現(xiàn)了抽樣的客觀性和平等性。 55. 對(duì)總體分布的估計(jì)用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計(jì)總體的期望和方差。
12、要熟悉樣本頻率直方圖的作法:(2)決定組距和組數(shù);(3)決定分點(diǎn);(4)列頻率分布表;(5)畫頻率直方圖。如:從10名女生與5名男生中選6名學(xué)生參加比賽,如果按性別分層隨機(jī)抽樣,則組成此參賽隊(duì)的概率為_。 56. 你對(duì)向量的有關(guān)概念清楚嗎?(1)向量既有大小又有方向的量。在此規(guī)定下向量可以在平面(或空間)平行移動(dòng)而不改變。(6)并線向量(平行向量)方向相同或相反的向量。規(guī)定零向量與任意向量平行。(7)向量的加、減法如圖:(8)平面向量基本定理(向量的分解定理)的一組基底。(9)向量的坐標(biāo)表示表示。 57. 平面向量的數(shù)量積數(shù)量積的幾何意義:(2)數(shù)量積的運(yùn)算法則練習(xí)答案:答案:2答案: 58.
13、 線段的定比分點(diǎn). 你能分清三角形的重心、垂心、外心、內(nèi)心及其性質(zhì)嗎? 59. 立體幾何中平行、垂直關(guān)系證明的思路清楚嗎?平行垂直的證明主要利用線面關(guān)系的轉(zhuǎn)化:線面平行的判定:線面平行的性質(zhì):三垂線定理(及逆定理):線面垂直:面面垂直: 60. 三類角的定義及求法(1)異面直線所成的角,090(2)直線與平面所成的角,090(三垂線定理法:A作或證AB于B,作BO棱于O,連AO,則AO棱l,AOB為所求。)三類角的求法:找出或作出有關(guān)的角。證明其符合定義,并指出所求作的角。計(jì)算大?。ń庵苯侨切?,或用余弦定理)。練習(xí)(1)如圖,OA為的斜線OB為其在內(nèi)射影,OC為內(nèi)過O點(diǎn)任一直線。(2)如圖,
14、正四棱柱ABCDA1B1C1D1中對(duì)角線BD18,BD1與側(cè)面B1BCC1所成的為30。求BD1和底面ABCD所成的角;求異面直線BD1和AD所成的角;求二面角C1BD1B1的大小。(3)如圖ABCD為菱形,DAB60,PD面ABCD,且PDAD,求面PAB與面PCD所成的銳二面角的大小。(ABDC,P為面PAB與面PCD的公共點(diǎn),作PFAB,則PF為面PCD與面PAB的交線) 61. 空間有幾種距離?如何求距離?點(diǎn)與點(diǎn),點(diǎn)與線,點(diǎn)與面,線與線,線與面,面與面間距離。將空間距離轉(zhuǎn)化為兩點(diǎn)的距離,構(gòu)造三角形,解三角形求線段的長(如:三垂線定理法,或者用等積轉(zhuǎn)化法)。如:正方形ABCDA1B1C1
15、D1中,棱長為a,則:(1)點(diǎn)C到面AB1C1的距離為_;(2)點(diǎn)B到面ACB1的距離為_;(3)直線A1D1到面AB1C1的距離為_;(4)面AB1C與面A1DC1的距離為_;(5)點(diǎn)B到直線A1C1的距離為_。 62. 你是否準(zhǔn)確理解正棱柱、正棱錐的定義并掌握它們的性質(zhì)?正棱柱底面為正多邊形的直棱柱正棱錐底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。正棱錐的計(jì)算集中在四個(gè)直角三角形中:它們各包含哪些元素? 63. 球有哪些性質(zhì)?(2)球面上兩點(diǎn)的距離是經(jīng)過這兩點(diǎn)的大圓的劣弧長。為此,要找球心角!(3)如圖,為緯度角,它是線面成角;為經(jīng)度角,它是面面成角。(5)球內(nèi)接長方體的對(duì)角線是球的直徑。正四面體的外接球半徑R與內(nèi)切球半徑r之比為R:r3:1。積為()答案:A 64. 熟記下列公式了嗎?(2)直線方程: 65. 如何判斷兩直線平行、垂直? 66. 怎樣判斷直線l與圓C的位置關(guān)系?圓心到直線的距離與圓的半徑比較。直線與圓相交時(shí),注意利用圓的“垂徑定理”。 67. 怎樣判斷直線與圓錐曲線的位置? 68. 分清圓錐曲線的定義 70. 在圓錐曲線與直線聯(lián)立求解時(shí),消元后得到的方程,要注意其二次項(xiàng)系數(shù)是否為零?0的限制。(求交點(diǎn),弦長,中點(diǎn),斜率,對(duì)稱存在性問題都在0下進(jìn)行。) 71. 會(huì)用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年四川省南充市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2024年廣東省佛山市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2022年四川省廣元市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2024年云南省大理自治州公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 集體三等功事跡報(bào)告
- 學(xué)校圣誕節(jié)晚會(huì)的主持開場白!中文英文對(duì)照版
- 《創(chuàng)建框架網(wǎng)》課件
- 《膈疝放射診斷》課件
- 2025年生命探測(cè)儀項(xiàng)目申請(qǐng)報(bào)告模板
- 2025年特種粉末及粉末冶金制品項(xiàng)目規(guī)劃申請(qǐng)報(bào)告模范
- 中建三局住宅工程精益建造實(shí)施指南
- 分布式光伏發(fā)電項(xiàng)目并網(wǎng)驗(yàn)收意見單
- 網(wǎng)站隱私政策模板
- YY∕T 1831-2021 梅毒螺旋體抗體檢測(cè)試劑盒(免疫層析法)
- 消弧產(chǎn)品規(guī)格實(shí)用標(biāo)準(zhǔn)化規(guī)定
- 裝飾裝修工程施工合理化建議和降低成本措施提要:完整
- 第十四章35kV變電站保護(hù)整定值計(jì)算實(shí)例
- 液態(tài)模鍛工藝介紹
- 水泵水輪機(jī)結(jié)構(gòu)介紹
- 井式爐課程設(shè)計(jì)說明書
- 拼音四線三格加田字格模板(A4打印版可編輯打字)
評(píng)論
0/150
提交評(píng)論