2021-2022學(xué)年湖南省五市十校高考數(shù)學(xué)一模試卷含解析_第1頁
2021-2022學(xué)年湖南省五市十校高考數(shù)學(xué)一模試卷含解析_第2頁
2021-2022學(xué)年湖南省五市十校高考數(shù)學(xué)一模試卷含解析_第3頁
2021-2022學(xué)年湖南省五市十校高考數(shù)學(xué)一模試卷含解析_第4頁
2021-2022學(xué)年湖南省五市十校高考數(shù)學(xué)一模試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考試結(jié)束后,請將本試卷和答題卡一并交回2答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目

2、要求的。1已知x,y滿足不等式組,則點(diǎn)所在區(qū)域的面積是( )A1B2CD2已知正項(xiàng)數(shù)列滿足:,設(shè),當(dāng)最小時,的值為( )ABCD3已知底面為正方形的四棱錐,其一條側(cè)棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的( )ABCD4已知,復(fù)數(shù),且為實(shí)數(shù),則( )ABC3D-35直線l過拋物線的焦點(diǎn)且與拋物線交于A,B兩點(diǎn),則的最小值是A10B9C8D76拋物線的焦點(diǎn)為,點(diǎn)是上一點(diǎn),則( )ABCD7已知雙曲線:的左右焦點(diǎn)分別為,為雙曲線上一點(diǎn),為雙曲線C漸近線上一點(diǎn),均位于第一象限,且,則雙曲線的離心率為( )ABCD8連接雙曲線及的4個頂點(diǎn)的四邊形面積為,連接4個焦點(diǎn)的四邊形的面積為,則當(dāng)取

3、得最大值時,雙曲線的離心率為( )ABCD9已知,若,則向量在向量方向的投影為( )ABCD10函數(shù)的圖象大致是( )ABCD11若函數(shù)滿足,且,則的最小值是( )ABCD12年某省將實(shí)行“”的新高考模式,即語文、數(shù)學(xué)、英語三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒有偏好,且不受其他因素影響,則甲同學(xué)同時選擇歷史和化學(xué)的概率為ABCD二、填空題:本題共4小題,每小題5分,共20分。13設(shè)等比數(shù)列的前項(xiàng)和為,若,則_14在中,已知,則A的值是_.15在一次醫(yī)療救助活動中,需要從A醫(yī)院某科室的6名男醫(yī)生、4名女醫(yī)生中分別抽調(diào)3名男醫(yī)生、2名女醫(yī)生,且男醫(yī)生中唯一的主任

4、醫(yī)師必須參加,則不同的選派案共有_種.(用數(shù)字作答)16已知隨機(jī)變量服從正態(tài)分布,若,則_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知為各項(xiàng)均為整數(shù)的等差數(shù)列,為的前項(xiàng)和,若為和的等比中項(xiàng),.(1)求數(shù)列的通項(xiàng)公式;(2)若,求最大的正整數(shù),使得.18(12分) 選修4-5:不等式選講:已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)設(shè),且的最小值為.若,求的最小值.19(12分)已知函數(shù)的定義域?yàn)?,且滿足,當(dāng)時,有,且.(1)求不等式的解集;(2)對任意,恒成立,求實(shí)數(shù)的取值范圍.20(12分)若正數(shù)滿足,求的最小值.21(12分)設(shè)函數(shù)().(1)討論函數(shù)

5、的單調(diào)性;(2)若關(guān)于x的方程有唯一的實(shí)數(shù)解,求a的取值范圍.22(10分)設(shè)點(diǎn),動圓經(jīng)過點(diǎn)且和直線相切.記動圓的圓心的軌跡為曲線.(1)求曲線的方程;(2)過點(diǎn)的直線與曲線交于、兩點(diǎn),且直線與軸交于點(diǎn),設(shè),求證:為定值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【解析】畫出不等式表示的平面區(qū)域,計(jì)算面積即可.【詳解】不等式表示的平面區(qū)域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,所以陰影部分面積.故選:C.【點(diǎn)睛】本題考查不等式組表示的平面區(qū)域面積的求法,考查數(shù)形結(jié)合思想和運(yùn)算能力,屬于??碱}

6、.2B【解析】由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,當(dāng)且僅當(dāng)時取得最小值,此時.故選:B【點(diǎn)睛】本題主要考查了數(shù)列中的最值問題,遞推公式的應(yīng)用,基本不等式求最值,考查了學(xué)生的運(yùn)算求解能力.3C【解析】試題分析:通過對以下四個四棱錐的三視圖對照可知,只有選項(xiàng)C是符合要求的.考點(diǎn):三視圖4B【解析】把和 代入再由復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡,利用虛部為0求得m值【詳解】因?yàn)闉閷?shí)數(shù),所以,解得.【點(diǎn)睛】本題考查復(fù)數(shù)的概念,考查運(yùn)算求解能力.5B【解析】根據(jù)拋物線中過焦點(diǎn)的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值【詳解】由拋物線標(biāo)準(zhǔn)方程可知p=2因

7、為直線l過拋物線的焦點(diǎn),由過拋物線焦點(diǎn)的弦的性質(zhì)可知 所以 因?yàn)?為線段長度,都大于0,由基本不等式可知,此時所以選B【點(diǎn)睛】本題考查了拋物線的基本性質(zhì)及其簡單應(yīng)用,基本不等式的用法,屬于中檔題6B【解析】根據(jù)拋物線定義得,即可解得結(jié)果.【詳解】因?yàn)?,所?故選B【點(diǎn)睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎(chǔ)題.7D【解析】 由雙曲線的方程的左右焦點(diǎn)分別為,為雙曲線上的一點(diǎn),為雙曲線的漸近線上的一點(diǎn),且都位于第一象限,且,可知為的三等分點(diǎn),且,點(diǎn)在直線上,并且,則,設(shè),則,解得,即,代入雙曲線的方程可得,解得,故選D點(diǎn)睛:本題考查了雙曲線的幾何性質(zhì),離心率的求法,考查了轉(zhuǎn)化思想以及運(yùn)

8、算能力,雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:求出,代入公式;只需要根據(jù)一個條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍)8D【解析】先求出四個頂點(diǎn)、四個焦點(diǎn)的坐標(biāo),四個頂點(diǎn)構(gòu)成一個菱形,求出菱形的面積,四個焦點(diǎn)構(gòu)成正方形,求出其面積,利用重要不等式求得取得最大值時有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個頂點(diǎn)的坐標(biāo)為,四個焦點(diǎn)的坐標(biāo)為,四個頂點(diǎn)形成的四邊形的面積,四個焦點(diǎn)連線形成的四邊形的面積,所以,當(dāng)取得最大值時有,離心率,故選:D.【點(diǎn)睛】該題考查的是有

9、關(guān)雙曲線的離心率的問題,涉及到的知識點(diǎn)有共軛雙曲線的頂點(diǎn),焦點(diǎn),菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.9B【解析】由,再由向量在向量方向的投影為化簡運(yùn)算即可【詳解】, 向量在向量方向的投影為.故選:B.【點(diǎn)睛】本題考查向量投影的幾何意義,屬于基礎(chǔ)題10A【解析】根據(jù)復(fù)合函數(shù)的單調(diào)性,同增異減以及采用排除法,可得結(jié)果.【詳解】當(dāng)時,由在遞增,所以在遞增又是增函數(shù),所以在遞增,故排除B、C當(dāng)時,若,則所以在遞減,而是增函數(shù)所以在遞減,所以A正確,D錯誤故選:A【點(diǎn)睛】本題考查具體函數(shù)的大致圖象的判斷,關(guān)鍵在于對復(fù)合函數(shù)單調(diào)性的理解,記住常用的結(jié)論:增+增=增,增-減=增

10、,減+減=減,復(fù)合函數(shù)單調(diào)性同增異減,屬中檔題.11A【解析】由推導(dǎo)出,且,將所求代數(shù)式變形為,利用基本不等式求得的取值范圍,再利用函數(shù)的單調(diào)性可得出其最小值.【詳解】函數(shù)滿足,即,即,則,由基本不等式得,當(dāng)且僅當(dāng)時,等號成立.,由于函數(shù)在區(qū)間上為增函數(shù),所以,當(dāng)時,取得最小值.故選:A.【點(diǎn)睛】本題考查代數(shù)式最值的計(jì)算,涉及對數(shù)運(yùn)算性質(zhì)、基本不等式以及函數(shù)單調(diào)性的應(yīng)用,考查計(jì)算能力,屬于中等題.12B【解析】甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計(jì)算公式,可得甲同學(xué)同時選擇歷史和化學(xué)的概率,故選B

11、二、填空題:本題共4小題,每小題5分,共20分。13【解析】由題意,設(shè)等比數(shù)列的公比為,根據(jù)已知條件,列出方程組,求得的值,利用求和公式,即可求解【詳解】由題意,設(shè)等比數(shù)列的公比為,因?yàn)?,即,解得,所?【點(diǎn)睛】本題主要考查了等比數(shù)列的通項(xiàng)公式,及前n項(xiàng)和公式的應(yīng)用,其中解答中根據(jù)等比數(shù)列的通項(xiàng)公式,正確求解首項(xiàng)和公比是解答本題的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題14【解析】根據(jù)正弦定理,由可得,由可得,將代入求解即得.【詳解】,即,則,則.故答案為:【點(diǎn)睛】本題考查正弦定理和二倍角的正弦公式,是基礎(chǔ)題.15【解析】首先選派男醫(yī)生中唯一的主任醫(yī)師,由題意利用排列組合公式即可確定不同的選

12、派案方法種數(shù).【詳解】首先選派男醫(yī)生中唯一的主任醫(yī)師,然后從名男醫(yī)生、名女醫(yī)生中分別抽調(diào)2名男醫(yī)生、名女醫(yī)生,故選派的方法為:.故答案為【點(diǎn)睛】解排列組合問題要遵循兩個原則:一是按元素(或位置)的性質(zhì)進(jìn)行分類;二是按事情發(fā)生的過程進(jìn)行分步具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置)160.4【解析】因?yàn)殡S機(jī)變量服從正態(tài)分布,利用正態(tài)曲線的對稱性,即得解.【詳解】因?yàn)殡S機(jī)變量服從正態(tài)分布所以正態(tài)曲線關(guān)于對稱,所.【點(diǎn)睛】本題考查了正態(tài)分布曲線的對稱性在求概率中的應(yīng)用,考查了學(xué)生概念理解,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.三、解答題:共

13、70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)(2)1008【解析】(1)用基本量求出首項(xiàng)和公差,可得通項(xiàng)公式;(2)用裂項(xiàng)相消法求得和,然后解不等式可得【詳解】解:(1)由題得,即解得或因?yàn)閿?shù)列為各項(xiàng)均為整數(shù),所以,即(2)令所以即,解得所以的最大值為1008【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式,考查裂項(xiàng)相消法求數(shù)列的和在等差數(shù)列和等比數(shù)列中基本量法是解題的基本方法18(1) (2)【解析】(1)當(dāng)時,原不等式可化為,分類討論即可求得不等式的解集;(2)由題意得,的最小值為,所以,由,得,利用基本不等式即可求解其最小值【詳解】(1)當(dāng)時,原不等式可化為,當(dāng)時,不等式可化

14、為,解得,此時;當(dāng)時,不等式可化為,解得,此時;當(dāng)時,不等式可化為,解得,此時,綜上,原不等式的解集為.(2)由題意得, ,因?yàn)榈淖钚≈禐?,所以,由,得,所?,當(dāng)且僅當(dāng),即,時,的最小值為.【點(diǎn)睛】本題主要考查了絕對值不等式問題,對于含絕對值不等式的解法有兩個基本方法,一是運(yùn)用零點(diǎn)分區(qū)間討論,二是利用絕對值的幾何意義求解法一是運(yùn)用分類討論思想,法二是運(yùn)用數(shù)形結(jié)合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強(qiáng)化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動向19(1);(2).【解析】(1)利用定義法求出函數(shù)在上單調(diào)遞增,由和,求出,求出,運(yùn)用單調(diào)性求出不等式的解集

15、;(2)由于恒成立,由(1)得出在上單調(diào)遞增,恒成立,設(shè),利用三角恒等變換化簡,結(jié)合恒成立的條件,構(gòu)造新函數(shù),利用單調(diào)性和最值,求出實(shí)數(shù)的取值范圍.【詳解】(1)設(shè),所以函數(shù)在上單調(diào)遞增,又因?yàn)楹停瑒t,所以得解得,即, 故的取值范圍為;(2) 由于恒成立,恒成立,設(shè), 則, 令, 則,所以在區(qū)間上單調(diào)遞增, 所以,根據(jù)條件,只要 ,所以.【點(diǎn)睛】本題考查利用定義法求函數(shù)的單調(diào)性和利用單調(diào)性求不等式的解集,考查不等式恒成立問題,還運(yùn)用降冪公式、兩角和與差的余弦公式、輔助角公式,考查轉(zhuǎn)化思想和解題能力.20【解析】試題分析:由柯西不等式得,所以試題解析:因?yàn)榫鶠檎龜?shù),且,所以于是由均值不等式可知,

16、當(dāng)且僅當(dāng)時,上式等號成立從而故的最小值為此時考點(diǎn):柯西不等式21(1)當(dāng)時,遞增區(qū)間時,無遞減區(qū)間,當(dāng)時,遞增區(qū)間時,遞減區(qū)間時;(2)或.【解析】(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標(biāo)準(zhǔn),若不恒成立,求解,即可得出結(jié)論;(2)有解,即,令,轉(zhuǎn)化求函數(shù)只有一個實(shí)數(shù)解,根據(jù)(1)中的結(jié)論,即可求解.【詳解】(1),當(dāng)時,恒成立,當(dāng)時,綜上,當(dāng)時,遞增區(qū)間時,無遞減區(qū)間,當(dāng)時,遞增區(qū)間時,遞減區(qū)間時;(2),令,原方程只有一個解,只需只有一個解,即求只有一個零點(diǎn)時,的取值范圍,由(1)得當(dāng)時,在單調(diào)遞增,且,函數(shù)只有一個零點(diǎn),原方程只有一個解,當(dāng)時,由(1)得在出取得極小值,也是最小值,當(dāng)時,此時函數(shù)只有一個零點(diǎn),原方程只有一個解,當(dāng)且遞增區(qū)間時,遞減區(qū)間時;,當(dāng),有兩個零點(diǎn),即原方程有兩個解,不合題意,所以的取值范圍是或.【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到單調(diào)性、零點(diǎn)、極值最值,考查分類討論和等價轉(zhuǎn)化思想,屬于中檔題.22(1);(2)見解析【解析】(1)已知點(diǎn)軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,由此可得曲線的方程;(2)設(shè)直線方程為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論