




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、參考文獻1 韋巍. 智能控制技術(shù), 機械工業(yè)出版社,20072 黃衛(wèi)華. 模糊控制系統(tǒng)及應(yīng)用,電子工業(yè)出版社,19963 馮冬青. 模糊智能控制,化學工業(yè)出版社,19984 湯兵勇 路林吉 王文杰.模糊控制理論與應(yīng)用技術(shù), 清華大學出版社,20065 吳曉莉 林哲輝. MATLAB輔助模糊控制系統(tǒng)設(shè)計, 西安電子科技大學出版社,20086 李華編 MCS一51系列單片機實用接口技術(shù) 北京航空航天大學出版社1993年8月7 林立 張俊亮. 電片機原理及應(yīng)用, 電子工業(yè)出版社,20138 張毅剛. 新編MCS-51單片機應(yīng)用設(shè)計, 哈爾濱工業(yè)大學出版,20039 李群芳 張士軍 黃建. 單片微型計
2、算機與接口技術(shù), 電子工業(yè)出版社,2010致 謝本論文的設(shè)計過程中不僅得到了老師的精心指導,還得到了各位專業(yè)老師的授業(yè)解惑與悉心教導,感謝各位老師的指導與幫助。在過去的大學四年學習中,各位老師不僅兢兢業(yè)業(yè)的教導我們學習,還對我們生活關(guān)懷備至,讓學生們深深感動。在此,我要再次感謝在我學習中給予指導與幫助的各位領(lǐng)導老師,也要感謝與我共同學習,共同進步的同學們。最后,對各位老師審閱我的論文深表感謝,并渴望給予批評指正。附錄A 外文文獻及其譯文Fuzzy LogicThetermfuzzywasfirstusedbyDr.LotfiZadehintheengineeringjournal,Procee
3、dingsoftheIRE,aleadingengineeringjournal,in1962.Dr.Zadehbecame,in1963,theChairmanoftheElectricalEngineeringdepartmentoftheUniversityofCaliforniaatBerkeley.Thatisaboutashighasyoucangointheelectricalengineeringfield.Dr.Zadehthoughtsarenottobetakenlightly.Fuzzylogicisnotthewaveofthefuture.Itisnow!There
4、arealreadyhundredsofmillionsofdollarsofsuccessful,fuzzylogicbasedcommercialproducts,everythingfromself-focusingcamerastowashingmachinesthatadjustthemselvesaccordingtohowdirtytheclothesare,automobileenginecontrols,anti-lockbrakingsystems,colorfilmdevelopingsystems,subwaycontrolsystemsandcomputerprogr
5、amstradingsuccessfullyinthefinancialmarkets.Notethatwhenyougosearchingforfuzzy-logicapplicationsintheUnitedStates,itisdifficulttoimpossibletofindacontrolsystemacknowledgedasbasedonfuzzylogic.JustimaginetheimpactonsalesifGeneralMotorsannouncedtheiranti-lockbrakingwasaccomplished with fuzzy logic! The
6、 general public is not ready for such an announcement.Objectives of the following chapters include: 1)To introduce to individuals in the fields of business, industry, science, invention and day-to-day living the power and benefits available to them through the fuzzy logic method and to help them und
7、erstand how fuzzy logic works. 2)To provide a fuzzy logic how-to-do-it guide, in terms everyone can understand, so everyone can put fuzzy logic to work doing something useful for them.Suppose you are driving down a typical, two way, 6 lane street in a large city, one mile between signal lights. The
8、speed limit is posted at 45 Mph. It is usually optimum and safest to drive with the traffic, which will usually be going about 48 Mph. How do you define with specific, precise instructions driving with the traffic? It is difficult. But, it is the kind of thing humans do every day and do well. There
9、will be some drivers weaving in and out and going more than 48 Mph and a few drivers driving exactly the posted 45 Mph. But, most drivers will be driving 48 Mph. They do this by exercising fuzzy logic - receiving a large number of fuzzy inputs, somehow evaluating all the inputs in their human brains
10、 and summarizing, weighting and averaging all these inputs to yield an optimum output decision. Inputs being evaluated may include several images and considerations such as: How many cars are in front. How fast are they driving. Any old clunkers going real slow. Do the police ever set up radar surve
11、illance on this stretch of road. How much leeway do the police allow over the 45 Mph limit. What do you see in the rear view mirror. Even with all this, and more, to think about, those who are driving with the traffic will all be going along together at the same speed.The same ability you have to dr
12、ive down a modern city street was used by our ancestors to successfully organize and carry out chases to drive wooly mammoths into pits, to obtain food, clothing and bone tools.Human beings have the ability to take in and evaluate all sorts of information from the physical world they are in contact
13、with and to mentally analyze, average and summarize all this input data into an optimum course of action. All living things do this, but humans do it more and do it better and have become the dominant species of the planet.If you think about it, much of the information you take in is not very precis
14、ely defined, such as the speed of a vehicle coming up from behind. We call this fuzzy input. However, some of your input is reasonably precise and non-fuzzy such as the speedometer reading. Your processing of all this information is not very precisely definable. We call this fuzzy processing. Fuzzy
15、logic theorists would call it using fuzzy algorithms (algorithm is another word for procedure or program, as in a computer program). Fuzzy logic is the way the human brain works, and we can mimic this in machines so they will perform somewhat like humans (not to be confused with Artificial Intellige
16、nce, where the goal is for machines to perform EXACTLY like humans). Fuzzy logic control and analysis systems may be electro-mechanical in nature, or concerned only with data, for example economic data, in all cases guided by If-Then rules stated in human language.The fuzzy logic analysis and contro
17、l method is, therefore1)Receiving of one, or a large number, of measurement or other assessment of conditions existing in some system we wish to analyze or control. 2)Processing all these inputs according to human based, fuzzy If-Then rules, which can be expressed in plain language words, in combina
18、tion with traditional non-fuzzy processing. 3)Averaging and weighting the resulting outputs from all the individual rules into one single output decision or signal which decides what to do or tells a controlled system what to do. The output signal eventually arrived at is a precise appearing defuzzi
19、fied, crisp value.Measured, non-fuzzy data is the primary input for the fuzzy logic method. Examples: temperature measured by a temperature transducer, motor speed, economic data, financial markets data, etc. It would not be usual in an electro-mechanical control system or a financial or economic an
20、alysis system, but humans with their fuzzy perceptions could also provide input. There could be a human in-the-loop. In the fuzzy logic literature, you will see the term fuzzy set.Summarizing Information - Human processing of information is not based on two-valued, off-on, either-or logic. It is bas
21、ed on fuzzy perceptions, fuzzy truths, fuzzy inferences, etc., all resulting in an averaged, summarized, normalized output, which is given by the human a precise number or decision value which he or she verbalizes, writes down or acts on. It is the goal of fuzzy logic control systems to also do this
22、.Fuzzy Variable - Words like red, blue, etc., are fuzzy and can have many shades and tints. They are just human opinions, not based on precise measurement in angstroms. These words are fuzzy variables.Speed is a fuzzy variable. Accelerator setting is a fuzzy variable. Examples of linguistic variable
23、s are: somewhat fast speed, very high speed, real slow speed, excessively high accelerator setting, accelerator setting about right, etc. A fuzzy variable becomes a linguistic variable when we modify it with descriptive words, such as somewhat fast, very high, real slow, etc. The main function of li
24、nguistic variables is to provide a means of working with the complex systems mentioned above as being too complex to handle by conventional mathematics and engineering formulas. Linguistic variables appear in control systems with feedback loop control and can be related to each other with conditiona
25、l, if-then statements. Example: If the speed is too fast, then back off on the high accelerator setting. 模糊邏輯模糊這個詞最早出現(xiàn)在扎德博士于1962年在一個工程學權(quán)威刊物上發(fā)表論文中。1963年,扎德博士成為加州大學伯克利分校電氣工程學院院長。那就意味著達到了電氣工程領(lǐng)域的頂尖。扎德博士認為模糊控制是那時的熱點,不是以后的熱點,更不應(yīng)該受到輕視。目前已經(jīng)有了成千上萬基于模糊邏輯的產(chǎn)品,從聚焦照相機到可以根據(jù)衣服臟度自我控制洗滌方式的洗衣機等。如果你在美國,你會很容易找到基于模糊的系統(tǒng)。想
26、一想,當通用汽車告訴大眾,她生產(chǎn)的汽車其反剎車是根據(jù)模糊邏輯而造成的時候,那會對其銷售造成多么大的影響。 以下的章節(jié)包括: 1)介紹處于商業(yè)等各個領(lǐng)域的人們他們?nèi)绻麖哪:壿嬔葑兌鴣淼睦嬷械玫胶锰帲约皫椭蠹依斫饽:壿嬍窃趺垂ぷ鞯摹?2)提供模糊邏輯是怎么工作的一種指導,只有人們知道了這一點,才能運用它用于做一些對自己有利的事情。假設(shè)你開著車行駛在傳統(tǒng)的雙向道,6個車道的公路上,交通燈之間距離是1公里。車速限制在45M之內(nèi),而最好的速度應(yīng)該在48M。你如何定義“遵守交通規(guī)則”呢?很難!但是,這卻是人類經(jīng)常要做并且做的很好的事情。將會有一些車手的車速總是在48M前后,也有一些人的車速總是定在45M。實際上,大部分的人會將車速控制在48M,他們用的就是模糊推理。在交通中還存在著一系列此類的案例。 你在城鎮(zhèn)中駕駛車輛的這個
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- JG/T 381-2012建筑結(jié)構(gòu)用冷成型焊接圓鋼管
- JG/T 263-2010建筑門窗用未增塑聚氯乙烯彩色型材
- JG/T 255-2020內(nèi)置遮陽中空玻璃制品
- JG/T 254-2015建筑用遮陽軟卷簾
- JG/T 19-1999層流潔凈工作臺檢驗標準
- JG 3061-1999鋼板沖壓扣件
- GM/T 0017-2023智能密碼鑰匙密碼應(yīng)用接口數(shù)據(jù)格式規(guī)范
- DZ/T 0169-1997物探化探計算機軟件開發(fā)規(guī)范
- DZ/T 0162-1995地震檢波器通用技術(shù)條件
- DZ/T 0019-1991汽車裝地質(zhì)鉆機試驗方法
- 2024年四川省德陽市中考化學試卷(含答案解析)
- 2024年湖北省中考語文試卷二套合卷附答案
- 知道網(wǎng)課智慧《睡眠醫(yī)學(廣州醫(yī)科大學)》測試答案
- 孩子在校受傷賠償協(xié)議書范本
- 2024年度重慶市招聘社區(qū)工作者考試題帶答案
- 放射診療許可遺失補辦申請表
- 女性中醫(yī)保健智慧樹知到期末考試答案章節(jié)答案2024年暨南大學
- python程序設(shè)計-說課
- MOOC 一生的健康鍛煉-西南交通大學 中國大學慕課答案
- 全套SPC控制圖制作-EXCEL版
- 2024春期國開電大法學本科《國際法》在線形考(形考任務(wù)1至5)試題及答案
評論
0/150
提交評論