初中數(shù)學(xué)華東師大九年級上冊第23章 圖形的相似第23章 專題相似三角形的常見模型_第1頁
初中數(shù)學(xué)華東師大九年級上冊第23章 圖形的相似第23章 專題相似三角形的常見模型_第2頁
初中數(shù)學(xué)華東師大九年級上冊第23章 圖形的相似第23章 專題相似三角形的常見模型_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、專題-相似三角形的常見模型(一)教學(xué)目標(biāo)學(xué)生會運(yùn)用兩組對應(yīng)角分別相等的兩個(gè)三角形為相似三角形的判定方法證明兩個(gè)三角形相似。學(xué)生經(jīng)過回顧、觀察、比較、證明、歸納的學(xué)習(xí)過程,理解“一線三等角”圖形的含義和特征,并且能夠結(jié)合其他圖形識別并構(gòu)造“一線三等角”模型。學(xué)生在學(xué)習(xí)過程中感受基本模型的重要性。教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):運(yùn)用相似三角形的判定方法解決“一線三等角”的相關(guān)計(jì)算和證明。難點(diǎn):在不同的背景中識別并且構(gòu)造“一線三等角”模型。教學(xué)方法:教師引導(dǎo)學(xué)生探究思考證明并使用知識。教學(xué)過程回顧兩種常見模型“A”字型 DE/BC 思考: 在Rt ABC中,點(diǎn)P是直角邊AB上的一點(diǎn),且不與點(diǎn)A、B重合,過點(diǎn)P作

2、直線截 ABC,使截得的三角形與Rt ABC相似,你可以怎么作?思考: 在Rt ABC中,點(diǎn)P是直角邊AB上的一點(diǎn),且不與點(diǎn)A、B重合,過點(diǎn)P作直線截 ABC,使截得的三角形與Rt ABC相似,你可以怎么作?“8”字型“8”字型 DE/BC 2、總結(jié)“一線三等角”模型2、總結(jié)“一線三等角”模型注: ( )( )注: ( )( )( )應(yīng)用一:與等腰三角形(包括等邊三角形)的結(jié)合應(yīng)用一:與等腰三角形(包括等邊三角形)的結(jié)合例1:如圖,等邊三角形ABC的邊長為5,點(diǎn)E為BC邊上的一點(diǎn),且BE=2,點(diǎn)D為AC邊上一點(diǎn),若 AED= ,求CD的長.例2:如圖,在平面直角坐標(biāo)系中,矩形OABC,點(diǎn)B的坐

3、標(biāo)為(1,2),例2:如圖,在平面直角坐標(biāo)系中,矩形OABC,點(diǎn)B的坐標(biāo)為(1,2), OAB沿直線OB翻折,點(diǎn)A落在點(diǎn)D處,求點(diǎn)D的坐標(biāo) . 應(yīng)用二:與矩形的結(jié)合例:如圖,矩形ABCD的一邊AD沿AE折疊,使點(diǎn)D落在BC邊上的點(diǎn)F處,已知CE=3cm,CF=4cm,則矩形ABCD的周長為 應(yīng)用二:與矩形的結(jié)合例:如圖,矩形ABCD的一邊AD沿AE折疊,使點(diǎn)D落在BC邊上的點(diǎn)F處,已知CE=3cm,CF=4cm,則矩形ABCD的周長為 cm.3、“一線三等角”模型的應(yīng)用應(yīng)用三:巧求點(diǎn)的坐標(biāo)例1:如圖,在平面直角坐標(biāo)系中,矩形ABCD的AB:BC=3:2,點(diǎn)A(3,0)、B(0,6)分別在x軸、

4、y軸上,則點(diǎn)D 的坐標(biāo)為 . 2023年奉賢模擬25題: 如圖,點(diǎn)P在線段AB上,連接PD,過點(diǎn)D作PD的垂線,與BC相交于點(diǎn)C.設(shè)線段AP的長為x.(1)當(dāng)AP=AD時(shí),求線段PC的長;(2)設(shè) PDC的面積為y,求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)的定義域;(3)當(dāng) APD DPC時(shí),求線段BC的長.5、課后思考4、課堂總結(jié)例2:如圖,在等腰Rt ABC和等腰Rt ADE中,BAC= DAE= ,且點(diǎn)D在BC上,DE與AC相交于點(diǎn)F.應(yīng)用三:巧求點(diǎn)的坐標(biāo)例1:如圖,在平面直角坐標(biāo)系中,矩形ABCD的AB:BC=3:2,點(diǎn)A(3,0)、B(0,6)分別在x軸、y軸上,則點(diǎn)D 的坐標(biāo)為 . 2023年奉賢模擬25題: 如圖,點(diǎn)P在線段AB上,連接PD,過點(diǎn)D作PD的垂線,與BC相交于點(diǎn)C.設(shè)線段AP的長為x.(1)當(dāng)AP=AD時(shí),求線段PC的長;(2)設(shè) PDC的面積為y,求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)的定義域;(3)當(dāng) APD DPC時(shí),求線段BC的長.5、課后思考4、課堂總結(jié)例2:如圖,在等腰Rt ABC和等腰R

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論