版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、中英文翻譯Aconfigurablemethodformulti-stylelicenseplaterecognitionAutomaticlicenseplaterecognition(LPR)hasbeenapracticaltechniqueinthepastdecades.Numerousapplications,suchasautomatictollcollection,criminalpursuitandtrafficlawenforcement,havebeenbenefitedfromit.Althoughsomenoveltechniques,forexampleRFID(r
2、adiofrequencyidentification),WSN(wirelesssensornetwork),etc.,havebeenproposedforcarIDidentification,LPRonimagedataisstillanindispensabletechniqueincurrentintelligenttransportationsystemsforitsconvenienceandlowcost.LPRisgenerallydividedintothreesteps:licenseplatedetection,charactersegmentationandchar
3、acterrecognition.ThedetectionsteproughlyclassifiesLPandnon-LPregions,thesegmentationstepseparatesthesymbols/charactersfromeachotherinoneLPsothatonlyaccurateoutlineofeachimageblockofcharactersisleftfortherecognition,andtherecognitionstepfinallyconvertsgreylevelimageblockintocharacters/symbolsbypredef
4、inedrecognitionmodels.AlthoughLPRtechniquehasalongresearchhistory,itisstilldrivenforwardbyvariousarisingdemands,themostfrequentoneofwhichisthevariationofLPstyles,forexample:Appearancevariationcausedbythechangeofimagecapturingconditions.Stylevariationfromonenationtoanother.Stylevariationwhenthegovern
5、mentreleasesnewLPformat.Wesummedhemupintofourfactors,namelyrotationangle,linenumber,charactertypeandformat,aftercomprehensiveanalysesofmulti-styleLPcharacteristicsonrealdata.Generallyspeaking,anychangeoftheabovefourfactorscanresultinthechangeofLPstyleorappearanceandthenaffectthedetection,segmentatio
6、norrecognitionalgorithms.IfoneLPhasalargerotationangle,thesegmentationandrecognitionalgorithmsforhorizontalLPmaynotwork.IftherearemorethanonecharacterlinesinoneLP,additionallineseparationalgorithmisneededbeforeasegmentationprocess.Withthevariationofcharactertypeswhenweapplythemethodfromonenationtoan
7、other,theabilitytore-definetherecognitionmodelsisneeded.Whatismore,thechangeofLPstylesrequiresthemethodtoadjustbyitselfsothatthesegmentedandrecognizedcharactercandidatescanmatchbestwithanLPformat.Severalmethodshavebeenproposedformulti-nationalLPsormultiformatLPsinthepastyearswhilefewofthemcomprehens
8、ivelyaddressthestyleadaptationproblemintermsoftheabovementionedfactors.SomeofthemonlyclaimtheabilityofprocessingmultinationalLPsbyredefiningthedetectionandsegmentationrulesorrecognitionmodels.Inthispaper,weproposeaconfigurableLPRmethodwhichisadaptablefromonestyletoanother,particularlyfromonenationto
9、another,bydefiningthefourfactorsasparameters.Userscanconstrainthescopeofaparameterandatthesametimethemethodwilladjustitselfsothattherecognitioncanbefasterandmoreaccurate.SimilartoexistingLPRtechniques,wealsoprovidedetailsofdetection,segmentationandrecognitionalgorithms.Thedifferenceisthatweemphasize
10、ontheconfigurableframeworkforLPRandtheextensibilityoftheproposedmethodformultistyleLPsinsteadoftheperformanceofeachalgorithm.Inthepastdecades,manymethodshavebeenproposedforLPRthatcontainsdetection,segmentationandrecognitionalgorithms.Inthefollowingparagraphs,thesealgorithmsandLPRmethodsbasedonthemar
11、ebrieflyreviewed.LPdetectionalgorithmscanbemainlyclassifiedintothreeclassesaccordingtothefeaturesused,namelyedgebasedalgorithms,colorbasedalgorithmsandtexture-basedalgorithms.ThemostcommonlyusedmethodforLPdetectioniscertainlythecombinationsofedgedetectionandmathematicalmorphology.Inthesemethods,grad
12、ient(edges)isfirstextractedfromtheimageandthenaspatialanalysisbymorphologyisappliedtoconnecttheedgesintoLPregions.AnotherwayiscountingedgesontheimagerowstofindoutregionsofdenseedgesortodescribethedenseedgesinLPregionsbyaHoughtransformation.Edgeanalysisisthemoststraightforwardmethodwithlowcomputation
13、complexityandgoodextensibility.Comparedwithedgebasedalgorithms,colorbasedalgorithmsdependmoreontheapplicationconditions.SinceLPsinanationoftenhaveseveralpredefinedcolors,researchershavedefinedcolormodelstosegmentregionofinterestsastheLPregions.Thiskindofmethodcanbeaffectedalotbylightingconditions.To
14、winbothhighrecallandlowfalsepositiverates,textureclassificationhasbeenusedforLPdetection.InRef.Kimetal.usedanSVMtotraintextureclassifierstodetectimageblockthatcontainsLPpixels.InRef.theauthorsusedGaborfilterstoextracttexturefeaturesinmultiscalesandmultiorientationstodescribethetexturepropertiesofLPr
15、egions.InRef.ZhangusedXandYderivativefeatures,grey-valuevarianceandAdaboostclassifiertoclassifyLPandnon-LPregionsinanimage.InRefs.waveletfeatureanalysisisappliedtoidentifyLPregions.Despitethegoodperformanceofthesemethodsthecomputationcomplexitywilllimittheirusability.Inaddition,texture-basedalgorith
16、msmaybeaffectedbymulti-lingualfactors.Multi-lineLPsegmentationalgorithmscanalsobeclassifiedintothreeclasses,namelyalgorithmsbasedonprojection,binarizationandglobaloptimization.Intheprojectionalgorithms,gradientorcolorprojectiononverticalorientationwillbecalculatedatfirst.The“valleysontheprojectionre
17、sultareregardedasthespacebetweencharactersandusedtosegmentcharactersfromeachother.SegmentedregionsarefurtherprocessedbyverticalprojectiontoobtainpreciseboundingboxesoftheLPcharacters.SincesimplesegmentationmethodsareeasilyaffectedbytherotationofLP,segmentingtheskewedLPbecomesakeyissuetobesolved.Inth
18、ebinarizationalgorithms,globalorlocalmethodsareoftenusedtoobtainforegroundfrombackgroundandthenregionconnectionoperationisusedtoobtaincharacterregions.Inthemostrecentwork,localthresholddeterminationandslidewindowtechniquearedevelopedtoimprovethesegmentationperformance.Intheglobaloptimizationalgorith
19、ms,thegoalisnottoobtaingoodsegmentationresultforindependentcharactersbuttoobtainacompromiseofcharacterspatialarrangementandsinglecharacterrecognitionresult.HiddenMarkovchainhasbeenusedtoformulatethedynamicsegmentationofcharactersinLP.Theadvantageofthealgorithmisthattheglobaloptimizationwillimproveth
20、erobustnesstonoise.Andthedisadvantageisthatpreciseformatdefinitionisnecessarybeforeasegmentationprocess.CharacterandsymbolrecognitionalgorithmsinLPRcanbecategorizedintolearning-basedonesandtemplatematchingones.Fortheformerone,artificialneuralnetwork(ANN)isthemostlyusedmethodsinceitisprovedtobeableto
21、obtainverygoodrecognitionresultgivenalargetrainingset.AnimportantfactorintraininganANNrecognitionmodelforLPistobuildreasonablenetworkstructurewithgoodfeatures.SVM-basedmethodisalsoadoptedinLPRtoobtaingoodrecognitionperformancewithevenfewtrainingsamples.Recently,cascadeclassifiermethodisalsousedforLP
22、recognition.Templatematchingisanotherwidelyusedalgorithm.Generally,researchersneedtobuildtemplateimagesbyhandfortheLPcharactersandsymbols.Theycanassignlargerweightsfortheimportantpoints,forexample,thecornerpoints,inthetemplatetoemphasizethedifferentcharacteristicsofthecharacters.Invarianceoffeaturep
23、ointsisalsoconsideredinthetemplatematchingmethodtoimprovetherobustness.Thedisadvantageisthatitisdifficulttodefinenewtemplatebytheuserswhohavenoprofessionalknowledgeonpatternrecognition,whichwillrestricttheapplicationofthealgorithm.Basedontheabovementionedalgorithms,lotsofLPRmethodshavebeendeveloped.
24、However,thesemethodsaremainlydevelopedforspecificnationorspecialLPformats.InRef.theauthorsfocusonrecognizingGreekLPsbyproposingnewsegmentationandrecognitionalgorithms.ThecharactersonLPsarealphanumericswithseveralfixedformats.InRef.Zhangetal.developedalearning-basedmethodforLPdetectionandcharacterrec
25、ognition.TheirmethodismainlyforLPsofKoreanstyles.InRef.opticalcharacterrecognition(OCR)techniqueareintegratedintoLPRtodevelopgeneralLPRmethod,whiletheperformanceofOCRmaydropwhenfacingLPsofpoorimagequalitysinceitisdifficulttodiscriminaterealcharacterfromcandidateswithoutformatsupervision.Thismethodca
26、nonlyselectcandidatesofbestrecognitionresultsasLPcharacterswithoutrecoveryprocess.Wangetal.developedamethodtorecognizeLPRwithvariousviewingangles.Skewfactorisconsideredintheirmethod.InRef.theauthorsproposedanautomaticLPRmethodwhichcantreatthecasesofchangesof川umination,vehiclespeed,routesandbackgroun
27、ds,whichwasrealizedbydevelopingnewdetectionandsegmentationalgorithmswithrobustnesstothe川uminationandimageblurring.Theperformanceofthemethodisencouragingwhiletheauthorsdonotpresenttherecognitionresultinmultinationormultistyleconditions.InRef.theauthorsproposeanLPRmethodinmultinationalenvironmentwithc
28、haractersegmentationandformatindependentrecognition.Sincenorecognitioninformationisusedincharactersegmentation,falsesegmentedcharactersfrombackgroundnoisemaybeproduced.Whatismore,therecognitionmethodisnotalearning-basedmethod,whichwilllimititsextensibility.InRef.Mposeagenerativerecognitionmethod.Gen
29、erativemodels(GM)areproposedtoproducemanysyntheticcharacterswhosestatisticalvariabilityisequivalent(foreachclass)tothatshowedbyrealsamples.Thusasuitablestatisticaldescriptionofalargesetofcharacterscanbeobtainedbyusingonlyalimitedsetofimages.Asaresult,theextensionabilityofcharacterrecognitionisimprov
30、ed.ThismethodmainlyconcernsthecharacterrecognitionextensibilityinsteadofwholeLPRmethod.FromthereviewwecanseethatLPRmethodinmultistyleLPRwithmultinationalapplicationisnotfullyconsidered.LotsofexistingLPRmethodscanworkverywellinaspecialapplicationconditionwhiletheperformancewilldropsharplywhentheyaree
31、xtendedfromoneconditiontoanother,orfromseveralstylestoothers.多類型車牌識別配置的方法自動車牌識別(LPR)在過去的幾十年中的實用技術(shù)。許多應(yīng)用,如自動收費,犯罪的追求和交通執(zhí)法,已從中受益。雖然一些新技術(shù),如RFID(無線射頻識別),WSN(無線傳感器網(wǎng)絡(luò)),等,已提出了汽車身份識別,車牌圖像數(shù)據(jù)仍因其方便、成本低,在目前的智能交通系統(tǒng)不可缺少的技術(shù)。車牌識別系統(tǒng)一般分為三個步驟:車牌定位,字符分割和字符識別。檢測步驟大致分類LP和非LP區(qū)域分割步驟,將符號/字符從彼此在一個LP,只有準(zhǔn)確的輪廓,每個字符圖像塊左為識別和識別步驟,最
32、后將灰度圖像塊轉(zhuǎn)換成字符/符號通過預(yù)定義的識別模型。雖然車牌識別技術(shù)有著很長的研究歷史,它仍然是推動各種要求而產(chǎn)生的,最常見的一個是LP風(fēng)格的變化,例如:(1)通過圖像采集條件的變化引起的外觀變化。風(fēng)格的變化從一個國家到另一個。風(fēng)格的變化時,政府發(fā)布新的LP格式。我們將其總結(jié)為四個因素,即旋轉(zhuǎn)角度,線數(shù),性格類型和格式,在對實際數(shù)據(jù)的多樣式的LP特征綜合分析。一般來說,上述四個因素的任何變化都會導(dǎo)致LP的風(fēng)格或外表的變化進(jìn)而影響檢測,分割和識別算法。如果LP有一個大的旋轉(zhuǎn)角度,水平LP分割和識別算法可能不工作。如果有一個以上的在一個LP的特征線,更多的線分離算法分割處理前需要。與人的性格類型的
33、變化時,我們采用的方法從一個國家到另一個,有能力重新定義識別模型是必要的。更甚的是,LP風(fēng)格的變化需要調(diào)整的方法本身,分割和識別候選字符可以匹配最好用一個LP格式。已經(jīng)提出了幾種方法,近年來跨國LPS或LPS多而很少全面解決上述因素的風(fēng)格適應(yīng)問題。他們中的一些人只要求處理跨國LPS的能力通過重新定義的檢測和分割規(guī)則或識別模型。在本文中,我們提出了一個可配置的車牌識別方法是從一個到另一個適合的風(fēng)格,特別是從一個國家到另一個,通過定義四個因素作為參數(shù)。用戶可以約束的參數(shù)范圍,同時該方法將自我調(diào)整,這樣可以更快、更準(zhǔn)確的識別。類似于現(xiàn)有的車牌識別技術(shù),我們還提供詳細(xì)的檢測,分割和識別算法。不同的是,
34、我們強調(diào)了車牌識別和可擴展性的方法而不是multistyleLPS各算法性能的可配置的框架。在過去的幾十年中,已經(jīng)提出了許多方法用于車牌識別包含檢測,分割和識別算法。在下面的段落中,這些算法和車牌識別方法的基礎(chǔ)上,簡要回顧。低壓檢測算法主要可按特征分為三類,即edgebased算法,基于顏色特征的算法和基于紋理的算法。LP檢測最常用的方法是邊緣檢測和數(shù)學(xué)形態(tài)學(xué)的組合。在這些方法中,梯度(邊)是第一個從圖像中提取和隨后的形態(tài)空間分析應(yīng)用于邊緣連接到低壓區(qū)域。另一種方法是計數(shù)的邊緣在圖像行發(fā)現(xiàn)密集的邊緣地區(qū)或描述密集的邊緣在LP地區(qū)的Hough變換。邊緣分析是最簡單的方法具有較低的計算復(fù)雜度和良好
35、的可擴展性。與edgebased算法相比,基于顏色特征的算法更依賴于應(yīng)用條件。由于LPS中的國家往往有幾個預(yù)定義的顏色,研究人員已經(jīng)定義的顏色模型的分割區(qū)域的利益為低壓區(qū)。這種方法可以通過照明條件影響很大。贏得了較高的召回率和較低的誤報率,紋理分類已被用于低壓檢測。在參考這種方法可以通過照明條件影響很大。贏得了較高的召回率和較低的誤報率,紋理分類已被用于低壓檢測?;返热嗽谖墨I(xiàn)。使用SVM分類器來檢測圖像塊的紋理包含LP像素。在參考文獻(xiàn)作者使用Gabor濾波器提取紋理特征的多尺度、multiorientations描述LP區(qū)域的紋理特性。在參考文獻(xiàn)采用張X和Y的衍生功能,灰度值的方差和AdaB
36、oost分類器,對圖像中的LP和非LP區(qū)域進(jìn)行分類,在文獻(xiàn)。小波特征分析方法識別低壓區(qū)。盡管這些方法的計算復(fù)雜性限制了他們的可用性,性能良好。此外,基于紋理的算法可以通過多語言因素的影響。多線的LP分割算法可分為三類,即算法的基礎(chǔ)上投影,二值化和全局優(yōu)化。在投影算法,梯度或彩色投影在垂直方向?qū)⑾扔嬎??!肮取痹谕队敖Y(jié)果作為特征和用于分割字符之間的空間。分割區(qū)域的垂直投影的進(jìn)一步處理以獲得精確的包圍盒的LP角色。從簡單的分割方法很容易通過LP的旋轉(zhuǎn)的影響,對傾余的LP成為亟待解決的關(guān)鍵問題。在二值化算法,全局或局部的方法經(jīng)常被用來從背景前景并獲得區(qū)域連接操作是用來獲取字符區(qū)域。在最近的工作中,局部閾值測定和滑動窗口技術(shù)的開發(fā),以提高
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 自動控制的綜合課程設(shè)計
- 團委學(xué)生會培訓(xùn)會
- 二零二五年度國際物流運輸合同執(zhí)行細(xì)則3篇
- 2025年度攝像機采購與數(shù)據(jù)傳輸安全協(xié)議6篇
- 2024年度文化創(chuàng)意產(chǎn)品贈予、借款與版權(quán)租賃協(xié)議3篇
- 2024版裝修合同起訴書
- 2024年起重機械短期租賃合同
- 編程的課程設(shè)計
- 2024年金融科技產(chǎn)品創(chuàng)新與推廣合作協(xié)議
- 二零二五年度個人新能源汽車充電站合伙協(xié)議書3篇
- 國開電大《建筑結(jié)構(gòu)試驗》形考任務(wù)1-4參考答案
- 年度分析報告格式范文
- 2024年度吉林省國家電網(wǎng)招聘之法學(xué)類典型題匯編及答案
- 2024年世界職業(yè)院校技能大賽中職組“嬰幼兒保育組”賽項考試題庫-下(多選、判斷題)
- 2024電力建設(shè)工程質(zhì)量問題通病防止手冊
- 【初中地理】世界的聚落+課件-2024-2025學(xué)年七年級地理上學(xué)期(湘教版2024)
- 辯論英文課件教學(xué)課件
- 2023-2024學(xué)年四川省宜賓市八年級上學(xué)期期末數(shù)學(xué)試卷及參考答案
- (統(tǒng)編版2024)語文七年級上冊 第四單元寫作《思路要清晰》 課件(新教材)
- 浙江省臺州市2023-2024學(xué)年高一上學(xué)期期末考試 化學(xué) 含答案
- 2024年度工作總結(jié)模板
評論
0/150
提交評論