北京市海淀區(qū)北京2023年高三壓軸卷數學試卷含解析_第1頁
北京市海淀區(qū)北京2023年高三壓軸卷數學試卷含解析_第2頁
北京市海淀區(qū)北京2023年高三壓軸卷數學試卷含解析_第3頁
北京市海淀區(qū)北京2023年高三壓軸卷數學試卷含解析_第4頁
北京市海淀區(qū)北京2023年高三壓軸卷數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2023年高考數學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1如圖是某地區(qū)2000年至2016年環(huán)境基礎設施投資額(單位:億元)的折線圖則下列結論中表述不正確的是( )A從2000年至2016年,該地區(qū)環(huán)境基礎設施投資額逐年增加;B2011年該地區(qū)環(huán)境

2、基礎設施的投資額比2000年至2004年的投資總額還多;C2012年該地區(qū)基礎設施的投資額比2004年的投資額翻了兩番 ;D為了預測該地區(qū)2019年的環(huán)境基礎設施投資額,根據2010年至2016年的數據(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據該模型預測該地區(qū)2019的環(huán)境基礎設施投資額為256.5億元.2甲、乙、丙、丁四位同學利用暑假游玩某風景名勝大峽谷,四人各自去景區(qū)的百里絕壁、千丈瀑布、原始森林、遠古村寨四大景點中的一個,每個景點去一人已知:甲不在遠古村寨,也不在百里絕壁;乙不在原始森林,也不在遠古村寨;“丙在遠古村寨”是“甲在原始森林”的充分條件;丁不在百里

3、絕壁,也不在遠古村寨若以上語句都正確,則游玩千丈瀑布景點的同學是( )A甲B乙C丙D丁3普通高中數學課程標準(2017版)提出了數學學科的六大核心素養(yǎng).為了比較甲、乙兩名高二學生的數學核心素養(yǎng)水平,現以六大素養(yǎng)為指標對二人進行了測驗,根據測驗結果繪制了雷達圖(如圖,每項指標值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是( )A甲的數據分析素養(yǎng)高于乙B甲的數學建模素養(yǎng)優(yōu)于數學抽象素養(yǎng)C乙的六大素養(yǎng)中邏輯推理最差D乙的六大素養(yǎng)整體平均水平優(yōu)于甲4公元263年左右,我國數學家劉徽發(fā)現當圓內接正多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”,利用“割圓術”劉徽得到了圓周率精

4、確到小數點后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的值為( )(參考數據: )A48B36C24D125由曲線圍成的封閉圖形的面積為( )ABCD6若復數z滿足,則復數z在復平面內對應的點在( )A第一象限B第二象限C第三象限D第四象限7已知是平面內互不相等的兩個非零向量,且與的夾角為,則的取值范圍是( )ABCD8已知,是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于,兩點,若,則的內切圓的半徑為( )ABCD9已知函數,若函數的所有零點依次記為,且,則( )ABCD10下圖是來自古希臘數學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成

5、,三個半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則( )ABC1D11雙曲線的右焦點為,過點且與軸垂直的直線交兩漸近線于兩點,與雙曲線的其中一個交點為,若,且,則該雙曲線的離心率為( )ABCD12在平面直角坐標系中,若不等式組所表示的平面區(qū)域內存在點,使不等式成立,則實數的取值范圍為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13若函數在區(qū)間上恰有4個不同的零點,則正數的取值范圍是_.14運行下面的算法偽代碼,輸出的結果為_15已知復數,其中是虛數單位若的實部與虛部相等,則實數的值為_16關于函數有下列四個命題:函數在上是增函數;函

6、數的圖象關于中心對稱;不存在斜率小于且與函數的圖象相切的直線;函數的導函數不存在極小值.其中正確的命題有_.(寫出所有正確命題的序號)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)如圖,在四棱錐PABCD中,PA平面ABCD,ABCBAD90,ADAP4,ABBC2,M為PC的中點(1)求異面直線AP,BM所成角的余弦值;(2)點N在線段AD上,且AN,若直線MN與平面PBC所成角的正弦值為,求的值18(12分)某工廠為提高生產效率,需引進一條新的生產線投入生產,現有兩條生產線可供選擇,生產線:有A,B兩道獨立運行的生產工序,且兩道工序出現故障的概率依次是0.02

7、,0.03.若兩道工序都沒有出現故障,則生產成本為15萬元;若A工序出現故障,則生產成本增加2萬元;若B工序出現故障,則生產成本增加3萬元;若A,B兩道工序都出現故障,則生產成本增加5萬元.生產線:有a,b兩道獨立運行的生產工序,且兩道工序出現故障的概率依次是0.04,0.01.若兩道工序都沒有出現故障,則生產成本為14萬元;若a工序出現故障,則生產成本增加8萬元;若b工序出現故障,則生產成本增加5萬元;若a,b兩道工序都出現故障,則生產成本增加13萬元.(1)若選擇生產線,求生產成本恰好為18萬元的概率;(2)為最大限度節(jié)約生產成本,你會給工廠建議選擇哪條生產線?請說明理由.19(12分)某

8、單位準備購買三臺設備,型號分別為已知這三臺設備均使用同一種易耗品,提供設備的商家規(guī)定:可以在購買設備的同時購買該易耗品,每件易耗品的價格為100元,也可以在設備使用過程中,隨時單獨購買易耗品,每件易耗品的價格為200元.為了決策在購買設備時應購買的易耗品的件數.該單位調查了這三種型號的設備各60臺,調査每臺設備在一個月中使用的易耗品的件數,并得到統計表如下所示.每臺設備一個月中使用的易耗品的件數678型號A30300頻數型號B203010型號C04515將調查的每種型號的設備的頻率視為概率,各臺設備在易耗品的使用上相互獨立.(1)求該單位一個月中三臺設備使用的易耗品總數超過21件的概率;(2)

9、以該單位一個月購買易耗品所需總費用的期望值為決策依據,該單位在購買設備時應同時購買20件還是21件易耗品?20(12分)如圖,在平面四邊形中,.(1)求;(2)求四邊形面積的最大值.21(12分)在直角坐標系中,直線的參數方程為,(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)若點是直線的一點,過點作曲線的切線,切點為,求的最小值.22(10分)如圖,三棱錐中,點,分別為,的中點,且平面平面求證:平面;若,求證:平面平面.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項

10、是符合題目要求的。1D【解析】根據圖像所給的數據,對四個選項逐一進行分析排除,由此得到表述不正確的選項.【詳解】對于選項,由圖像可知,投資額逐年增加是正確的.對于選項,投資總額為億元,小于年的億元,故描述正確.年的投資額為億,翻兩翻得到,故描述正確.對于選項,令代入回歸直線方程得億元,故選項描述不正確.所以本題選D.【點睛】本小題主要考查圖表分析能力,考查利用回歸直線方程進行預測的方法,屬于基礎題.2D【解析】根據演繹推理進行判斷【詳解】由可知甲乙丁都不在遠古村寨,必有丙同學去了遠古村寨,由可知必有甲去了原始森林,由可知丁去了千丈瀑布,因此游玩千丈瀑布景點的同學是丁故選:D【點睛】本題考查演繹

11、推理,掌握演繹推理的定義是解題基礎3D【解析】根據雷達圖對選項逐一分析,由此確定敘述正確的選項.【詳解】對于A選項,甲的數據分析分,乙的數據分析分,甲低于乙,故A選項錯誤.對于B選項,甲的建模素養(yǎng)分,乙的建模素養(yǎng)分,甲低于乙,故B選項錯誤.對于C選項,乙的六大素養(yǎng)中,邏輯推理分,不是最差,故C選項錯誤.對于D選項,甲的總得分分,乙的總得分分,所以乙的六大素養(yǎng)整體平均水平優(yōu)于甲,故D選項正確.故選:D【點睛】本小題主要考查圖表分析和數據處理,屬于基礎題.4C【解析】由開始,按照框圖,依次求出s,進行判斷?!驹斀狻?,故選C.【點睛】框圖問題,依據框圖結構,依次準確求出數值,進行判斷,是解題關鍵。

12、5A【解析】先計算出兩個圖像的交點分別為,再利用定積分算兩個圖形圍成的面積.【詳解】封閉圖形的面積為.選A.【點睛】本題考察定積分的應用,屬于基礎題.解題時注意積分區(qū)間和被積函數的選取.6A【解析】化簡復數,求得,得到復數在復平面對應點的坐標,即可求解.【詳解】由題意,復數z滿足,可得,所以復數在復平面內對應點的坐標為位于第一象限故選:A.【點睛】本題主要考查了復數的運算,以及復數的幾何表示方法,其中解答中熟記復數的運算法則,結合復數的表示方法求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.7C【解析】試題分析:如下圖所示,則,因為與的夾角為,即,所以,設,則,在三角形中,由正弦定理得

13、,所以,所以,故選C考點:1向量加減法的幾何意義;2正弦定理;3正弦函數性質8B【解析】設左焦點的坐標, 由AB的弦長可得a的值,進而可得雙曲線的方程,及左右焦點的坐標,進而求出三角形ABF2的面積,再由三角形被內切圓的圓心分割3個三角形的面積之和可得內切圓的半徑.【詳解】由雙曲線的方程可設左焦點,由題意可得,由,可得,所以雙曲線的方程為: 所以,所以三角形ABF2的周長為設內切圓的半徑為r,所以三角形的面積,所以,解得,故選:B【點睛】本題考查求雙曲線的方程和雙曲線的性質及三角形的面積的求法,內切圓的半徑與三角形長周長的一半之積等于三角形的面積可得半徑的應用,屬于中檔題.9C【解析】令,求出

14、在的對稱軸,由三角函數的對稱性可得,將式子相加并整理即可求得的值.【詳解】令,得,即對稱軸為.函數周期,令,可得.則函數在上有8條對稱軸.根據正弦函數的性質可知,將以上各式相加得:故選:C.【點睛】本題考查了三角函數的對稱性,考查了三角函數的周期性,考查了等差數列求和.本題的難點是將所求的式子拆分為的形式.10D【解析】根據以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進而求得所求表達式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【點睛】本小題主要考查同角三角函數的基本關系式,考查二倍角公式,屬于基礎題.11D【解析】根據已知得本題首先求出直線

15、與雙曲線漸近線的交點,再利用,求出點,因為點在雙曲線上,及,代入整理及得,又已知,即可求出離心率【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因為,即可得到,故選:D【點睛】本題主要考查的是雙曲線的簡單幾何性質和向量的坐標運算,離心率問題關鍵尋求關于,的方程或不等式,由此計算雙曲線的離心率或范圍,屬于中檔題12B【解析】依據線性約束條件畫出可行域,目標函數恒過,再分別討論的正負進一步確定目標函數與可行域的基本關系,即可求解【詳解】作出不等式對應的平面區(qū)域,如圖所示:其中,直線過定點,當時,不等式表示直線及其左邊的區(qū)域,不滿足題意;當時,直線的斜率,不等式表示直線下方的區(qū)域,不滿足題意

16、;當時,直線的斜率,不等式表示直線上方的區(qū)域,要使不等式組所表示的平面區(qū)域內存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數的取值范圍為,故選:B.【點睛】本題考查由目標函數有解求解參數取值范圍問題,分類討論與數形結合思想,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13;【解析】求出函數的零點,讓正數零點從小到大排列,第三個正數零點落在區(qū)間上,第四個零點在區(qū)間外即可【詳解】由,得, ,解得故答案為:【點睛】本題考查函數的零點,根據正弦函數性質求出函數零點,然后題意,把正數零點從小到大排列,由于0已經是一個零點,因此只有前3個零點在區(qū)間上由此可得的不等關系,從而得出結論,

17、本題解法屬于中檔題14【解析】模擬程序的運行過程知該程序運行后計算并輸出的值,用裂項相消法求和即可.【詳解】模擬程序的運行過程知,該程序運行后執(zhí)行:.故答案為:【點睛】本題考查算法語句中的循環(huán)語句和裂項相消法求和;掌握循環(huán)體執(zhí)行的次數是求解本題的關鍵;屬于基礎題.15【解析】直接由復數代數形式的乘法運算化簡,結合已知條件即可求出實數的值.【詳解】解:的實部與虛部相等,所以,計算得出.故答案為:【點睛】本題考查復數的乘法運算和復數的概念,屬于基礎題.16【解析】由單調性、對稱性概念、導數的幾何意義、導數與極值的關系進行判斷【詳解】函數的定義域是,由于,在上遞增,函數在上是遞增,正確;,函數的圖象

18、關于中心對稱,正確;,時取等號,正確;,設,則,顯然是即的極小值點,錯誤故答案為:.【點睛】本題考查函數的單調性、對稱性,考查導數的幾何意義、導數與極值,解題時按照相關概念判斷即可,屬于中檔題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1).(2)1【解析】(1)先根據題意建立空間直角坐標系,求得向量和向量的坐標,再利用線線角的向量方法求解.(2,由AN,設N(0,0)(04),則(1,1,2),再求得平面PBC的一個法向量,利用直線MN與平面PBC所成角的正弦值為,由|cos,|求解.【詳解】(1) 因為PA平面ABCD,且AB,AD平面ABCD,所以PAAB,PAA

19、D.又因為BAD90,所以PA,AB,AD兩兩互相垂直分別以AB,AD,AP為x,y,z軸建立空間直角坐標系,則由AD2AB2BC4,PA4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4)又因為M為PC的中點,所以M(1,1,2)所以(1,1,2),(0,0,4),所以cos,所以異面直線AP,BM所成角的余弦值為.(2) 因為AN,所以N(0,0)(04),則(1,1,2),(0,2,0),(2,0,4)設平面PBC的法向量為(x,y,z),則即令x2,解得y0,z1,所以(2,0,1)是平面PBC的一個法向量因為直線MN與平面PBC所成角的正弦值

20、為,所以|cos,|,解得10,4,所以的值為1.【點睛】本題主要考查了空間向量法研究空間中線線角,線面角的求法及應用,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.18(1)0.0294.(2)應選生產線.見解析【解析】(1)由題意轉化條件得A工序不出現故障B工序出現故障,利用相互獨立事件的概率公式即可得解;(2)分別算出兩個生產線增加的生產成本的期望,進而求出兩個生產線的生產成本期望值,比較期望值即可得解.【詳解】(1)若選擇生產線,生產成本恰好為18萬元,即A工序不出現故障B工序出現故障,故所求的概率為. (2)若選擇生產線,設增加的生產成本為(萬元),則的可能取值為0,2,3,5

21、. ,,所以萬元;故選生產線的生產成本期望值為 (萬元). 若選生產線,設增加的生產成本為(萬元),則的可能取值為0,8,5,13. ,所以,故選生產線的生產成本期望值為 (萬元),故應選生產線.【點睛】本題考查了相互獨立事件的概率,考查了離散型隨機變量期望的應用,屬于中檔題.19(1)(2)應該購買21件易耗品【解析】(1)由統計表中數據可得型號分別為在一個月使用易耗品的件數為6,7,8時的概率,設該單位三臺設備一個月中使用易耗品的件數總數為X,則,利用獨立事件概率公式進而求解即可;(2)由題可得X所有可能的取值為,即可求得對應的概率,再分別討論該單位在購買設備時應同時購買20件易耗品和21

22、件易耗品時總費用的可能取值及期望,即可分析求解.【詳解】(1)由題中的表格可知A型號的設備一個月使用易耗品的件數為6和7的頻率均為;B型號的設備一個月使用易耗品的件數為6,7,8的頻率分別為;C型號的設備一個月使用易耗品的件數為7和8的頻率分別為;設該單位一個月中三臺設備使用易耗品的件數分別為,則,設該單位三臺設備一個月中使用易耗品的件數總數為X,則而,故,即該單位一個月中三臺設備使用的易耗品總數超過21件的概率為.(2)以題意知,X所有可能的取值為;由(1)知,若該單位在購買設備的同時購買了20件易耗品,設該單位一個月中購買易耗品所需的總費用為元,則的所有可能取值為,;若該單位在肋買設備的同時購買了21件易耗品,設該單位一個月中購買易耗品所需的總

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論