版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2023年高考數(shù)學(xué)模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知雙曲線的一條漸近線傾斜角為,則( )A3BCD2已知非零向量,滿足,則與的夾角為( )ABCD3若時(shí),則的取值范圍為( )ABCD4一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則
2、這個幾何體的體積為( ) ABCD5是虛數(shù)單位,復(fù)數(shù)在復(fù)平面上對應(yīng)的點(diǎn)位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限6在等差數(shù)列中,若為前項(xiàng)和,則的值是( )A156B124C136D1807已知是虛數(shù)單位,則( )ABCD8 “”是“”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件9已知實(shí)數(shù)滿足約束條件,則的最小值為( )A-5B2C7D1110已知集合A=x|1x1,則AB=A(1,1)B(1,2)C(1,+)D(1,+)11如圖,在平面四邊形中,滿足,且,沿著把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且使,則三棱錐體積的最大值為( )A12BCD12下列函數(shù)中既關(guān)于直線對稱
3、,又在區(qū)間上為增函數(shù)的是( )A.BCD二、填空題:本題共4小題,每小題5分,共20分。13一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內(nèi)任意轉(zhuǎn)動,則容器體積的最小值為_.14的展開式中的常數(shù)項(xiàng)為_.15三對父子去參加親子活動,坐在如圖所示的6個位置上,有且僅有一對父子是相鄰而坐的坐法有_種(比如:B與D、B與C是相鄰的,A與D、C與D是不相鄰的).16如圖,在菱形ABCD中,AB=3,E,F(xiàn)分別為BC,CD上的點(diǎn),若線段EF上存在一點(diǎn)M,使得,則_,_(本題第1空2分,第2空3分)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)自湖北武漢爆發(fā)新型冠狀
4、病毒惑染的肺炎疫情以來,武漢醫(yī)護(hù)人員和醫(yī)療、生活物資嚴(yán)重缺乏,全國各地紛紛馳援.截至1月30日12時(shí),湖北省累計(jì)接收捐贈物資615.43萬件,包括醫(yī)用防護(hù)服2.6萬套N95口軍47.9萬個,醫(yī)用一次性口罩172.87萬個,護(hù)目鏡3.93萬個等.中某運(yùn)輸隊(duì)接到給武漢運(yùn)送物資的任務(wù),該運(yùn)輸隊(duì)有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運(yùn)輸隊(duì)每天至少運(yùn)送720t物資.已知每輛卡車每天往返的次數(shù):A型卡車16次,B型卡車12次;每輛卡車每天往返的成本:A型卡車240元,B型卡車378元.求每天派出A型卡車與B型卡車各多少輛,運(yùn)輸隊(duì)所花的成本最低?18(12分)如圖1,與
5、是處在同-個平面內(nèi)的兩個全等的直角三角形,連接是邊上一點(diǎn),過作,交于點(diǎn),沿將向上翻折,得到如圖2所示的六面體(1)求證:(2)設(shè)若平面底面,若平面與平面所成角的余弦值為,求的值;(3)若平面底面,求六面體的體積的最大值.19(12分)已知函數(shù),(1)證明:在區(qū)間單調(diào)遞減;(2)證明:對任意的有20(12分)已知數(shù)列的前項(xiàng)和為,且滿足()求數(shù)列的通項(xiàng)公式;()證明:21(12分)已知函數(shù)(1)求單調(diào)區(qū)間和極值;(2)若存在實(shí)數(shù),使得,求證:22(10分)如圖所示,在四棱錐中,底面為正方形,為的中點(diǎn),為棱上的一點(diǎn).(1)證明:面面;(2)當(dāng)為中點(diǎn)時(shí),求二面角余弦值.參考答案一、選擇題:本題共12小
6、題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】由雙曲線方程可得漸近線方程,根據(jù)傾斜角可得漸近線斜率,由此構(gòu)造方程求得結(jié)果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,解得:.故選:.【點(diǎn)睛】本題考查根據(jù)雙曲線漸近線傾斜角求解參數(shù)值的問題,關(guān)鍵是明確直線傾斜角與斜率的關(guān)系;易錯點(diǎn)是忽略方程表示雙曲線對于的范圍的要求.2B【解析】由平面向量垂直的數(shù)量積關(guān)系化簡,即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關(guān)系可得,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B【點(diǎn)睛】本題考查了平面向量
7、數(shù)量積的運(yùn)算,平面向量夾角的求法,屬于基礎(chǔ)題.3D【解析】由題得對恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對恒成立,令,在單調(diào)遞減,且,在上單調(diào)遞增,在上單調(diào)遞減,又在單調(diào)遞增,的取值范圍為.故選:D【點(diǎn)睛】本題主要考查了不等式恒成立問題,導(dǎo)數(shù)的綜合應(yīng)用,考查了轉(zhuǎn)化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.4C【解析】由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案【詳解】由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:【點(diǎn)睛】本題考查的知識點(diǎn)是由三視圖求幾何體的體
8、積,解決本題的關(guān)鍵是得到該幾何體的形狀5D【解析】求出復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo),即可得出結(jié)論.【詳解】復(fù)數(shù)在復(fù)平面上對應(yīng)的點(diǎn)的坐標(biāo)為,該點(diǎn)位于第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)對應(yīng)的點(diǎn)的位置的判斷,屬于基礎(chǔ)題.6A【解析】因?yàn)?,可得,根?jù)等差數(shù)列前項(xiàng)和,即可求得答案.【詳解】,.故選:A.【點(diǎn)睛】本題主要考查了求等差數(shù)列前項(xiàng)和,解題關(guān)鍵是掌握等差中項(xiàng)定義和等差數(shù)列前項(xiàng)和公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.7B【解析】根據(jù)復(fù)數(shù)的乘法運(yùn)算法則,直接計(jì)算,即可得出結(jié)果.【詳解】.故選B【點(diǎn)睛】本題主要考查復(fù)數(shù)的乘法,熟記運(yùn)算法則即可,屬于基礎(chǔ)題型.8B【解析】或,從而明確充分性與必
9、要性.【詳解】,由可得:或,即能推出,但推不出“”是“”的必要不充分條件故選【點(diǎn)睛】本題考查充分性與必要性,簡單三角方程的解法,屬于基礎(chǔ)題.9A【解析】根據(jù)約束條件畫出可行域,再將目標(biāo)函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時(shí)候?yàn)檫^點(diǎn)的時(shí)候,解得所以,此時(shí)故選A項(xiàng)【點(diǎn)睛】本題考查線性規(guī)劃求一次相加的目標(biāo)函數(shù),屬于常規(guī)題型,是簡單題.10C【解析】根據(jù)并集的求法直接求出結(jié)果.【詳解】 , ,故選C.【點(diǎn)睛】考查并集的求法,屬于基礎(chǔ)題.11C【解析】過作于,連接,易知,從而可證平面,進(jìn)而可知,當(dāng)最大時(shí),取得最大值,取的中
10、點(diǎn),可得,再由,求出的最大值即可.【詳解】在和中,所以,則,過作于,連接,顯然,則,且,又因?yàn)?,所以平面,所以,?dāng)最大時(shí),取得最大值,取的中點(diǎn),則,所以,因?yàn)?,所以點(diǎn)在以為焦點(diǎn)的橢圓上(不在左右頂點(diǎn)),其中長軸長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點(diǎn)睛】本題考查三棱錐體積的最大值,考查學(xué)生的空間想象能力與計(jì)算求解能力,屬于中檔題.12C【解析】根據(jù)函數(shù)的對稱性和單調(diào)性的特點(diǎn),利用排除法,即可得出答案.【詳解】A中,當(dāng)時(shí),所以不關(guān)于直線對稱,則錯誤;B中,所以在區(qū)間上為減函數(shù),則錯誤;D中,而,則,所以不關(guān)于直線對稱,則錯誤;
11、故選:C.【點(diǎn)睛】本題考查函數(shù)基本性質(zhì),根據(jù)函數(shù)的解析式判斷函數(shù)的對稱性和單調(diào)性,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內(nèi)任意轉(zhuǎn)動,則圓柱形容器的底面直徑及高的最小值均等于長方體的體對角線的長,長方體的體對角線的長為,所以容器體積的最小值為.1431【解析】由二項(xiàng)式定理及其展開式得通項(xiàng)公式得:因?yàn)榈恼归_式得通項(xiàng)為,則的展開式中的常數(shù)項(xiàng)為: ,得解.【詳解】解:,則的展開式中的常數(shù)項(xiàng)為:.故答案為:31.【點(diǎn)睛】本題考查二項(xiàng)式定理及其展開式的通項(xiàng)公式,求某項(xiàng)的導(dǎo)數(shù),考查計(jì)算能力.15192【解析】根據(jù)題意
12、,分步進(jìn)行分析:,在三對父子中任選1對,安排在相鄰的位置上,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,由分步計(jì)數(shù)原理計(jì)算可得答案【詳解】根據(jù)題意,分步進(jìn)行分析:,在三對父子中任選1對,有3種選法,由圖可得相鄰的位置有4種情況,將選出的1對父子安排在相鄰的位置,有種安排方法;,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,有種安排方法,則有且僅有一對父子是相鄰而坐的坐法種;故答案為:【點(diǎn)睛】本題考查排列、組合的應(yīng)用,涉及分步計(jì)數(shù)原理的應(yīng)用,屬于基礎(chǔ)題16 【解析】根據(jù)題意,設(shè),則,所以,解得,所以,從而有 .三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或
13、演算步驟。17每天派出A型卡車輛,派出B型卡車輛,運(yùn)輸隊(duì)所花成本最低【解析】設(shè)每天派出A型卡車輛,則派出B型卡車輛,由題意列出約束條件,作出可行域,求出使目標(biāo)函數(shù)取最小值的整數(shù)解,即可得解.【詳解】設(shè)每天派出A型卡車輛,則派出B型卡車輛,運(yùn)輸隊(duì)所花成本為元,由題意可知,整理得,目標(biāo)函數(shù),如圖所示,為不等式組表示的可行域,由圖可知,當(dāng)直線經(jīng)過點(diǎn)時(shí),最小,解方程組,解得,然而,故點(diǎn)不是最優(yōu)解.因此在可行域的整點(diǎn)中,點(diǎn)使得取最小值,即,故每天派出A型卡車輛,派出B型卡車輛,運(yùn)輸隊(duì)所花成本最低.【點(diǎn)睛】本題考查了線性規(guī)劃問題中的最優(yōu)整數(shù)解問題,考查了數(shù)形結(jié)合的思想,解題關(guān)鍵在于列出不等式組(方程組)尋
14、求約束條件,并就題目所述找出目標(biāo)函數(shù),同時(shí)注意整點(diǎn)的選取,屬于中檔題.18(1)證明見解析(2)(3)【解析】根據(jù)折疊圖形, ,由線面垂直的判定定理可得平面,再根據(jù)平面,得到.(2)根據(jù),以為坐標(biāo)原點(diǎn),為軸建立空間直角坐標(biāo)系,根據(jù),可知,表示相應(yīng)點(diǎn)的坐標(biāo),分別求得平面與平面的法向量,代入求解.設(shè)所求幾何體的體積為,設(shè)為高,則,表示梯形BEFD和 ABD的面積由,再利用導(dǎo)數(shù)求最值.【詳解】(1)證明:不妨設(shè)與的交點(diǎn)為與的交點(diǎn)為由題知,則有又,則有由折疊可知所以可證由平面平面,則有平面又因?yàn)槠矫?,所?(2)解:依題意,有平面平面,又平面,則有平面,又由題意知,如圖所示:以為坐標(biāo)原點(diǎn),為軸建立如圖
15、所示的空間直角坐標(biāo)系由題意知由可知,則則有,設(shè)平面與平面的法向量分別為則有則所以因?yàn)?,解得設(shè)所求幾何體的體積為,設(shè),則,當(dāng)時(shí),當(dāng)時(shí),在是增函數(shù),在上是減函數(shù)當(dāng)時(shí),有最大值,即六面體的體積的最大值是【點(diǎn)睛】本題主要考查線線垂直,線面垂直,面面垂直的轉(zhuǎn)化,二面角的向量求法和空間幾何體的體積,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題.19(1)答案見解析(2)答案見解析【解析】(1)利用復(fù)合函數(shù)求導(dǎo)求出,利用導(dǎo)數(shù)與函數(shù)單調(diào)性之間的關(guān)系即可求解. (2)首先證,令,求導(dǎo)可得單調(diào)遞增,由即可證出;再令,再利用導(dǎo)數(shù)可得單調(diào)遞增,由即可證出.【詳解】(1)顯然時(shí),故在單調(diào)遞減(2)首先證,令,則單調(diào)
16、遞增,且,所以再令,所以單調(diào)遞增,即,【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)證明不等式,解題的關(guān)鍵掌握復(fù)合函數(shù)求導(dǎo),屬于難題.20(),()見解析【解析】(1)由,分和兩種情況,即可求得數(shù)列的通項(xiàng)公式;(2)由題,得,利用等比數(shù)列求和公式,即可得到本題答案.【詳解】()解:由題,得當(dāng)時(shí),得;當(dāng)時(shí),整理,得數(shù)列是以1為首項(xiàng),2為公比的等比數(shù)列,;()證明:由()知,故故得證【點(diǎn)睛】本題主要考查根據(jù)的關(guān)系式求通項(xiàng)公式以及利用等比數(shù)列的前n項(xiàng)和公式求和并證明不等式,考查學(xué)生的運(yùn)算求解能力和推理證明能力.21(1)時(shí),函數(shù)單調(diào)遞增,函數(shù)單調(diào)遞減,;(2)見解析【解析】(1)求出函數(shù)的定義
17、域與導(dǎo)函數(shù),利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,即可得到函數(shù)的極值;(2)易得且,要證明,即證,即證,即對恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,即可得證;【詳解】解:(1)因?yàn)槎x域?yàn)?,所以,時(shí),即在和上單調(diào)遞增,當(dāng)時(shí),即函數(shù)在單調(diào)遞減,所以在處取得極小值,在處取得極大值;,;(2)易得,要證明,即證,即證即證對恒成立,令,則令,解得,即在上單調(diào)遞增;令,解得,即在上單調(diào)遞減;則在取得極小值,也就是最小值, 從而結(jié)論得證.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,利用導(dǎo)數(shù)證明不等式,考查運(yùn)算求解能力,考查函數(shù)與方程思想,屬于中檔題22(1)證明見解析;(2).【解析】(1)要證明面面,只需證
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 有關(guān)貨物運(yùn)輸合同錦集
- 雇傭護(hù)工協(xié)議書范本
- 加工承包合同
- 簡單的租賃協(xié)議書范本
- 切削液銷售合同
- 二零二五年度工廠水電供應(yīng)與節(jié)能優(yōu)化承包協(xié)議4篇
- 欄桿工程施工合同范本
- 企業(yè)資源共享與共享經(jīng)濟(jì)項(xiàng)目開發(fā)合作協(xié)議
- 高效能源項(xiàng)目運(yùn)營合作框架協(xié)議
- 公司向個人借款合同范本簡單
- 《職業(yè)培訓(xùn)師教程》課件
- (康德一診)重慶市2025屆高三高三第一次聯(lián)合診斷檢測 英語試卷(含答案詳解)
- 2025年福建泉州文旅集團(tuán)招聘24人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 建筑行業(yè)砂石物資運(yùn)輸方案
- 文化沖突與民族認(rèn)同建構(gòu)-洞察分析
- 2024年高中一年級數(shù)學(xué)考試題及答案
- 42式太極劍劍譜及動作說明(吳阿敏)
- 危險(xiǎn)化學(xué)品企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化課件
- 巨鹿二中骨干教師個人工作業(yè)績材料
- 《美的歷程》導(dǎo)讀課件
- 心電圖 (史上最完美)課件
評論
0/150
提交評論