廣東省深圳市福田區(qū)耀華實驗學校華文部2023學年高三第四次模擬考試數(shù)學試卷含解析_第1頁
廣東省深圳市福田區(qū)耀華實驗學校華文部2023學年高三第四次模擬考試數(shù)學試卷含解析_第2頁
廣東省深圳市福田區(qū)耀華實驗學校華文部2023學年高三第四次模擬考試數(shù)學試卷含解析_第3頁
廣東省深圳市福田區(qū)耀華實驗學校華文部2023學年高三第四次模擬考試數(shù)學試卷含解析_第4頁
廣東省深圳市福田區(qū)耀華實驗學校華文部2023學年高三第四次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2023年高考數(shù)學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知集合,若,則的最小值為( )A1B2C3D42已知集合A,則集合( )ABCD3已知雙曲線:的焦點為,且上點滿足,則雙曲線的離心率為ABCD54已知m,n是兩條不同的直線,是兩個不同的平

2、面,給出四個命題:若,則;若,則;若,則;若,則其中正確的是( )ABCD5若復數(shù)(為虛數(shù)單位),則( )ABCD6已知是平面內(nèi)互不相等的兩個非零向量,且與的夾角為,則的取值范圍是( )ABCD7水平放置的,用斜二測畫法作出的直觀圖是如圖所示的,其中 ,則繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積為( )ABCD8四人并排坐在連號的四個座位上,其中與不相鄰的所有不同的坐法種數(shù)是( )A12B16C20D89設(shè)集合,則( )ABCD10如圖,在ABC中,點M是邊BC的中點,將ABM沿著AM翻折成ABM,且點B不在平面AMC內(nèi),點P是線段BC上一點.若二面角P-AM-B與二面角P-AM-C的平面

3、角相等,則直線AP經(jīng)過ABCA重心B垂心C內(nèi)心D外心11已知函數(shù)若函數(shù)在上零點最多,則實數(shù)的取值范圍是( )ABCD12已知斜率為k的直線l與拋物線交于A,B兩點,線段AB的中點為,則斜率k的取值范圍是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13(5分)在長方體中,已知棱長,體對角線,兩異面直線與所成的角為,則該長方體的表面積是_14設(shè)是等比數(shù)列的前項的和,成等差數(shù)列,則的值為_15設(shè)復數(shù)滿足,則_.16展開式中的系數(shù)為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù)()若,求曲線在點處的切線方程;()若在上恒成立,求實數(shù)的取值范圍;

4、()若數(shù)列的前項和,求證:數(shù)列的前項和.18(12分)在中,角A、B、C的對邊分別為a、b、c,且. (1)求角A的大??;(2)若,的平分線與交于點D,與的外接圓交于點E(異于點A),求的值.19(12分)在中,角的對邊分別為,且滿足.()求角的大?。唬ǎ┤舻拿娣e為,求和的值.20(12分)已知函數(shù),其導函數(shù)為,(1)若,求不等式的解集;(2)證明:對任意的,恒有.21(12分)已知橢圓()的半焦距為,原點到經(jīng)過兩點,的直線的距離為()求橢圓的離心率;()如圖,是圓的一條直徑,若橢圓經(jīng)過,兩點,求橢圓的方程22(10分)已知數(shù)列,滿足.(1)求數(shù)列,的通項公式;(2)分別求數(shù)列,的前項和,.參

5、考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】解出,分別代入選項中 的值進行驗證.【詳解】解:,.當 時,,此時不成立.當 時,,此時成立,符合題意.故選:B.【點睛】本題考查了不等式的解法,考查了集合的關(guān)系.2A【解析】化簡集合,,按交集定義,即可求解.【詳解】集合,則.故選:A.【點睛】本題考查集合間的運算,屬于基礎(chǔ)題.3D【解析】根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,因此該雙曲線的離心率.【點睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運算能力.4D【解析】根據(jù)面面

6、垂直的判定定理可判斷;根據(jù)空間面面平行的判定定理可判斷;根據(jù)線面平行的判定定理可判斷;根據(jù)面面垂直的判定定理可判斷.【詳解】對于,若,兩平面相交,但不一定垂直,故錯誤;對于,若,則,故正確;對于,若,當,則與不平行,故錯誤;對于,若,則,故正確;故選:D【點睛】本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎(chǔ)題.5B【解析】根據(jù)復數(shù)的除法法則計算,由共軛復數(shù)的概念寫出.【詳解】,故選:B【點睛】本題主要考查了復數(shù)的除法計算,共軛復數(shù)的概念,屬于容易題.6C【解析】試題分析:如下圖所示,則,因為與的夾角為,即,所以,設(shè),則,在三角形中,由正弦定理得,所以,所以,故

7、選C考點:1向量加減法的幾何意義;2正弦定理;3正弦函數(shù)性質(zhì)7B【解析】根據(jù)斜二測畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,圓錐的側(cè)面展開圖是扇形根據(jù)扇形面積公式即可求得組合體的表面積.【詳解】根據(jù)“斜二測畫法”可得,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,它的表面積為.故選:【點睛】本題考查斜二測畫法的應用及組合體的表面積求法,難度較易.8A【解析】先將除A,B以外的兩人先排,再將A,B在3個空位置里進行插空,再相乘得答案.【詳解】先將除A,B以外的兩人先排,有種;再將A,B在3個空位置里進行插空,有

8、種,所以共有種.故選:A【點睛】本題考查排列中不相鄰問題,常用插空法,屬于基礎(chǔ)題.9A【解析】解出集合,利用交集的定義可求得集合.【詳解】因為,又,所以.故選:A.【點睛】本題考查交集的計算,同時也考查了一元二次不等式的求解,考查計算能力,屬于基礎(chǔ)題.10A【解析】根據(jù)題意P到兩個平面的距離相等,根據(jù)等體積法得到SPBM【詳解】二面角P-AM-B與二面角P-AM-C的平面角相等,故P到兩個平面的距離相等.故VP-ABM=VP-ACM,即故BP=CP,故P為CB中點.故選:A.【點睛】本題考查了二面角,等體積法,意在考查學生的計算能力和空間想象能力.11D【解析】將函數(shù)的零點個數(shù)問題轉(zhuǎn)化為函數(shù)與

9、直線的交點的個數(shù)問題,畫出函數(shù)的圖象,易知直線過定點,故與在時的圖象必有兩個交點,故只需與在時的圖象有兩個交點,再與切線問題相結(jié)合,即可求解.【詳解】由圖知與有個公共點即可,即,當設(shè)切點,則,.故選:D.【點睛】本題考查了函數(shù)的零點個數(shù)的問題,曲線的切線問題,注意運用轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于較難的壓軸題.12C【解析】設(shè),設(shè)直線的方程為:,與拋物線方程聯(lián)立,由得,利用韋達定理結(jié)合已知條件得,代入上式即可求出的取值范圍【詳解】設(shè)直線的方程為:, ,聯(lián)立方程,消去得:,且,線段的中點為,,把 代入,得,故選:【點睛】本題主要考查了直線與拋物線的位置關(guān)系,考查了韋達定理的應用,屬于中檔題二、填空

10、題:本題共4小題,每小題5分,共20分。1310【解析】作出長方體如圖所示,由于,則就是異面直線與所成的角,且,在等腰直角三角形中,由,得,又,則,從而長方體的表面積為 142【解析】設(shè)等比數(shù)列的公比設(shè)為再根據(jù)成等差數(shù)列利用基本量法求解再根據(jù)等比數(shù)列各項間的關(guān)系求解即可.【詳解】解:等比數(shù)列的公比設(shè)為成等差數(shù)列,可得若則顯然不成立,故則,化為解得,則故答案為:【點睛】本題主要考查了等比數(shù)列的基本量求解以及運用,屬于中檔題.15.【解析】利用復數(shù)的運算法則首先可得出,再根據(jù)共軛復數(shù)的概念可得結(jié)果.【詳解】復數(shù)滿足,故而可得,故答案為.【點睛】本題考查了復數(shù)的運算法則,共軛復數(shù)的概念,屬于基礎(chǔ)題1

11、6【解析】把按照二項式定理展開,可得的展開式中的系數(shù)【詳解】解:,故它的展開式中的系數(shù)為,故答案為:【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17 ();();()證明見解析.【解析】試題分析:將,求出切線方程求導后討論當時和時的單調(diào)性證明,求出實數(shù)的取值范圍先求出、的通項公式,利用當時,得,下面證明:解析:()因為,所以,切點為.由,所以,所以曲線在處的切線方程為,即()由,令,則(當且僅當取等號).故在上為增函數(shù).當時,,故在上為增函數(shù),所以恒成立,故符合題意;當時,由于,根據(jù)零點存

12、在定理,必存在,使得,由于在上為增函數(shù),故當時,,故在上為減函數(shù), 所以當時,,故在上不恒成立,所以不符合題意.綜上所述,實數(shù)的取值范圍為(III)證明:由由()知當時,故當時, 故,故.下面證明:因為而,所以,即:點睛:本題考查了利用導數(shù)的幾何意義求出參數(shù)及證明不等式成立,借助第二問的證明過程,利用導數(shù)的單調(diào)性證明數(shù)列的不等式,在求解的過程中還要求出數(shù)列的和,計算較為復雜,本題屬于難題18(1);(2)【解析】(1)由,利用正弦定理轉(zhuǎn)化整理為,再利用余弦定理求解.(2)根據(jù),利用兩角和的余弦得到,利用數(shù)形結(jié)合,設(shè),在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因為, 所以, 即,即,

13、所以.(2),. 所以,從而.所以,.不妨設(shè),O為外接圓圓心則AO=1,.在中,由正弦定理知,有. 即; 在中,由,從而.所以.【點睛】本題主要考查平面向量的模的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.19();(),.【解析】()運用正弦定理和二角和的正弦公式,化簡,即可求出角的大??;()通過面積公式和 ,可以求出,這樣用余弦定理可以求出,用余弦定理求出,根據(jù)同角的三角函數(shù)關(guān)系,可以求出,這樣可以求出,最后利用二角差的余弦公式求出的值.【詳解】()由正弦定理可知:,已知,所以,,所以有.(),由余弦定理可知:,.【點睛】本題考查了正弦定理、余弦定理、面積公式、二倍角公式、二角差的余弦公

14、式以及同角的三角函數(shù)關(guān)系,考查了運算能力.20(1) (2)證明見解析【解析】(1)求出的導數(shù),根據(jù)導函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性,再利用函數(shù)單調(diào)性解函數(shù)型不等式;(2)構(gòu)造函數(shù),利用導數(shù)判斷在區(qū)間上單調(diào)遞減,結(jié)合可得結(jié)果.【詳解】(1)若,則.設(shè),則,所以在上單調(diào)遞減,在上單調(diào)遞增.又當時,;當時,;當時,所以所以在上單調(diào)遞增,又,所以不等式的解集為.(2)設(shè),再令,在上單調(diào)遞減,又,.即【點睛】本題考查利用函數(shù)的導數(shù)來判斷函數(shù)的單調(diào)性,再利用函數(shù)的單調(diào)性來解決不等式問題,屬于較難題.21();()【解析】試題分析:(1)依題意,由點到直線的距離公式可得,又有,聯(lián)立可求離心率;(2)由(1)設(shè)橢圓方程,再設(shè)直線方程,與橢圓方程聯(lián)立,求得,令,可得,即得橢圓方程.試題解析:()過點的直線方程為,則原點到直線的距離,由,得,解得離心率.()由(1)知,橢圓的方程為.依題意,圓心是線段的中點,且.易知,不與軸垂直.設(shè)其直線方程為,代入(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論