2021-2022學年內(nèi)蒙古自治區(qū)包頭市某學校數(shù)學高職單招試題(含答案)_第1頁
2021-2022學年內(nèi)蒙古自治區(qū)包頭市某學校數(shù)學高職單招試題(含答案)_第2頁
2021-2022學年內(nèi)蒙古自治區(qū)包頭市某學校數(shù)學高職單招試題(含答案)_第3頁
2021-2022學年內(nèi)蒙古自治區(qū)包頭市某學校數(shù)學高職單招試題(含答案)_第4頁
2021-2022學年內(nèi)蒙古自治區(qū)包頭市某學校數(shù)學高職單招試題(含答案)_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022學年內(nèi)蒙古自治區(qū)包頭市某學校數(shù)學高職單招試題(含答案)學校:________班級:________姓名:________考號:________

一、單選題(10題)1.己知集合A={x|x>0},B={x|-2<x<1},則A∪B等于()A.{x|0<x<1}B.{x|x>0}C.{x|-2<x<1}D.{x|x>-2}

2.AB>0是a>0且b>0的()A.充分條件B.必要條件C.充要條件D.既不充分也不必要條件

3.在等差數(shù)列{an}中,如果a3+a4+a5+a6+a7+a8=30,則數(shù)列的前10項的和S10為()A.30B.40C.50D.60

4.直線x-y=0,被圓x2+y2=1截得的弦長為()A.

B.1

C.4

D.2

5.設函數(shù)f(x)=x2+1,則f(x)是()

A.奇函數(shù)B.偶函數(shù)C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)

6.已知函數(shù)f(x)=㏒2x,在區(qū)間[1,4]上隨機取一個數(shù)x,使得f(x)的值介于-1到1之間的概率為A.1/3B.3/4C.1/2D.2/3

7.已知等差數(shù)列中{an}中,a3=4,a11=16,則a7=()A.18B.8C.10D.12

8.{已知集合A={-1,0,1},B={x|-1≤x<1}則A∩B=()A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}

9.已知等差數(shù)列{an}滿足a2+a4=4,a3+a5=它的前10項的和Sn()A.138B.135C.95D.23

10.設集合,,則()A.A,B的都是有限集B.A,B的都是無限集C.A是有限集,B是無限集D.B是有限集,A是無限集

二、填空題(10題)11.

12.已知α為第四象限角,若cosα=1/3,則cos(α+π/2)=_______.

13.的展開式中,x6的系數(shù)是_____.

14.

15.己知三個數(shù)成等差數(shù)列,他們的和為18,平方和是116,則這三個數(shù)從小到大依次是_____.

16.當0<x<1時,x(1-x)取最大值時的值為________.

17.

18.函數(shù)f(x)=-X3+mx2+1(m≠0)在(0,2)內(nèi)的極大值為最大值,則m的取值范圍是________________.

19.若事件A與事件ā互為對立事件,且P(ā)=P(A),則P(ā)=

。

20.若展開式中各項系數(shù)的和為128,則展開式中x2項的系數(shù)為_____.

三、計算題(5題)21.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。

22.在等差數(shù)列{an}中,前n項和為Sn

,且S4

=-62,S6=-75,求等差數(shù)列{an}的通項公式an.

23.設函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.

24.己知直線l與直線y=2x+5平行,且直線l過點(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.

25.有語文書3本,數(shù)學書4本,英語書5本,書都各不相同,要把這些書隨機排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。

四、證明題(5題)26.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標準方程為(x-1)2

+(y+1)2

=8.

27.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.

28.己知sin(θ+α)=sin(θ+β),求證:

29.如圖所示,四棱錐中P-ABCD,底面ABCD為矩形,點E為PB的中點.求證:PD//平面ACE.

30.

五、簡答題(5題)31.設函數(shù)是奇函數(shù)(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)當x<0時,判斷f(x)的單調(diào)性并加以證明.

32.證明上是增函數(shù)

33.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求實數(shù)x。

34.若α,β是二次方程的兩個實根,求當m取什么值時,取最小值,并求出此最小值

35.拋物線的頂點在原點,焦點為橢圓的左焦點,過點M(-1,-1)引拋物線的弦使M為弦的中點,求弦長

六、綜合題(5題)36.己知點A(0,2),5(-2,-2).(1)求過A,B兩點的直線l的方程;(2)己知點A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點。求橢圓C的標準方程.

37.

(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標軸相切的圓的標準方程.

38.己知橢圓與拋物線y2=4x有共同的焦點F2,過橢圓的左焦點F1作傾斜角為的直線,與橢圓相交于M、N兩點.求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.

39.在△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

40.

參考答案

1.D

2.Ba大于0且b大于0可得到到ab大于0,但是反之不成立,所以是必要條件。

3.C

4.D直線與圓相交的性質(zhì).直線x-y=0過圓心(0,0),故該直線被圓x2+y2=1所截弦長為圓的直徑的長度2.

5.B由題可知,f(x)=f(-x),所以函數(shù)是偶函數(shù)。

6.A幾何概型的概率.由-1<㏒2x≤1,得1<x<2;而[1,4]∩[1/2,2]=[1,2]區(qū)間長度為1,區(qū)間[1,4]長度為3,所求概率為1/3

7.C等差數(shù)列的性質(zhì)∵{an}為等差數(shù)列,∴2a7=a3+a11=20,∴a7=10.

8.B集合的運算.A中的元素-1,0在B中,1不在B中,所以A∩B={-1,0}.

9.C因為(a3+a5)-(a2+a4)=2d=6,所以d=3,a1=-4,所以S10=10a1+10*(10-1)d/2=95.

10.B由于等腰三角形和(0,1)之間的實數(shù)均有無限個,因此A,B均為無限集。

11.

12.

利用誘導公式計算三角函數(shù)值.∵α為第四象限角,∴sinα-

13.1890,

14.(3,-4)

15.4、6、8

16.1/2均值不等式求最值∵0<

17.外心

18.(0,3).利用導數(shù)求函數(shù)的極值,最值.f(x)=-3x2+2mx=x(-3x+2m).令f(x)=0,得x=0或x=2m/3因為x∈(0,2),所以0<2m/3<2,0<m<3.答案:(0,3).

19.0.5由于兩個事件是對立事件,因此兩者的概率之和為1,又兩個事件的概率相等,因此概率均為0.5.

20.-189,

21.

22.解:設首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

23.解:(1)因為f(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因為f(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2

24.解:(1)設所求直線l的方程為:2x-y+c=0∵直線l過點(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當x=0時,y=-4∴直線l在y軸上的截距為-4

25.

26.

27.證明:考慮對數(shù)函數(shù)y=lgx的限制知

:當x∈(1,10)時,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴l(xiāng)gx-2<0A-B<0∴A<B

28.

29.

∴PD//平面ACE.

30.

31.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)設-1<<<0∵

若時

故當X<-1時為增函數(shù);當-1≤X<0為減函數(shù)

32.證明:任取且x1<x2∴即∴在是增函數(shù)

33.

∵μ//v∴(2x+1.4)=(2-x,3)得

34.

35.

36.解:(1)直線l過A(0,2),B(-2,-2)兩點,根據(jù)斜率公式可得斜率因此直線l的方程為y-2=2x即2x-y+2=0⑵由⑴知,直線l的方程為2x-y+2=0,因此直線l與x軸的交點為(-1,0).又直線l過橢圓C的左焦點,故橢圓C的左焦點為(-1,0).設橢圓C的焦距為2c,則有c=1因為點A(0,2)在橢圓C:上所以b=2根據(jù)a2=b2+c2,有a=故橢圓C的標準方程為

37.解:(1)斜率k=5/3,設直線l的方程5x-3y+m=0,直線l經(jīng)過點(0,-8/3),所以m=8,直線l的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論