版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知方程的兩個解分別為、,則的值為()A. B. C.7 D.32.將2001×1999變形正確的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+13.綠豆在相同條件下的發(fā)芽試驗,結(jié)果如下表所示:每批粒數(shù)n100300400600100020003000發(fā)芽的粒數(shù)m9628238257094819042850發(fā)芽的頻率0.9600.9400.9550.9500.9480.9520.950下面有三個推斷:①當(dāng)n=400時,綠豆發(fā)芽的頻率為0.955,所以綠豆發(fā)芽的概率是0.955;②根據(jù)上表,估計綠豆發(fā)芽的概率是0.95;③若n為4000,估計綠豆發(fā)芽的粒數(shù)大約為3800粒.其中推斷合理的是()A.① B.①② C.①③ D.②③4.如果一組數(shù)據(jù)6,7,x,9,5的平均數(shù)是2x,那么這組數(shù)據(jù)的中位數(shù)為()A.5 B.6 C.7 D.95.下面的幾何圖形是由四個相同的小正方體搭成的,其中主視圖和左視圖相同的是()A.B.C.D.6.如圖,小穎為測量學(xué)校旗桿AB的高度,她在E處放置一塊鏡子,然后退到C處站立,剛好從鏡子中看到旗桿的頂部B.已知小穎的眼睛D離地面的高度CD=1.5m,她離鏡子的水平距離CE=0.5m,鏡子E離旗桿的底部A處的距離AE=2m,且A、C、E三點在同一水平直線上,則旗桿AB的高度為()A.4.5m B.4.8m C.5.5m D.6m7.隨著“三農(nóng)”問題的解決,某農(nóng)民近兩年的年收入發(fā)生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據(jù)①②③三種農(nóng)作物每種作物每年的收入占該年年收入的比例繪制的扇形統(tǒng)計圖.依據(jù)統(tǒng)計圖得出的以下四個結(jié)論正確的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入為2.8萬D.前年年收入不止①②③三種農(nóng)作物的收入8.據(jù)國土資源部數(shù)據(jù)顯示,我國是全球“可燃冰”資源儲量最多的國家之一,海、陸總儲量約為39000000000噸油當(dāng)量,將39000000000用科學(xué)記數(shù)法表示為()A.3.9×1010 B.3.9×109 C.0.39×1011 D.39×1099.平面直角坐標(biāo)系內(nèi)一點關(guān)于原點對稱點的坐標(biāo)是()A. B. C. D.10.如圖,BC∥DE,若∠A=35°,∠E=60°,則∠C等于()A.60° B.35° C.25° D.20°11.如圖,在?ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,若BG=,則△CEF的面積是()A. B. C. D.12.某校九年級共有1、2、3、4四個班,現(xiàn)從這四個班中隨機抽取兩個班進行一場籃球比賽,則恰好抽到1班和2班的概率是()A.18 B.16 C.3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間.甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲、乙行駛過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數(shù)關(guān)系如圖所示.則當(dāng)乙車到達A地時,甲車已在C地休息了_____小時.14.當(dāng)a<0,b>0時.化簡:=_____.15.關(guān)于的一元二次方程有兩個不相等的實數(shù)根,請你寫出一個滿足條件的值__________.16.如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,將△ABC繞點C順時針旋轉(zhuǎn)至△A′B′C,使得點A′恰好落在AB上,則旋轉(zhuǎn)角度為_____.17.計算=________.18.如圖,直線x=2與反比例函數(shù)和的圖象分別交于A、B兩點,若點P是y軸上任意一點,則△PAB的面積是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)解方程:.20.(6分)在圍棋盒中有x顆黑色棋子和y顆白色棋子,從盒中隨機地取出一個棋子,如果它是黑色棋子的概率是;如果往盒中再放進10顆黑色棋子,則取得黑色棋子的概率變?yōu)椋髕和y的值.21.(6分)在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)(k≠0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標(biāo)為(﹣2,3).求一次函數(shù)和反比例函數(shù)解析式.若將點C沿y軸向下平移4個單位長度至點F,連接AF、BF,求△ABF的面積.根據(jù)圖象,直接寫出不等式的解集.22.(8分)如圖,在Rt△ABC中,點O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結(jié)AD.已知∠CAD=∠B.求證:AD是⊙O的切線.若BC=8,tanB=,求⊙O的半徑.23.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點,與y軸交于點C.求拋物線y=ax2+2x+c的解析式:;點D為拋物線上對稱軸右側(cè)、x軸上方一點,DE⊥x軸于點E,DF∥AC交拋物線對稱軸于點F,求DE+DF的最大值;①在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標(biāo);若不存在,請說明理由;②點Q在拋物線對稱軸上,其縱坐標(biāo)為t,請直接寫出△ACQ為銳角三角形時t的取值范圍.24.(10分)高考英語聽力測試期間,需要杜絕考點周圍的噪音.如圖,點A是某市一高考考點,在位于A考點南偏西15°方向距離125米的點處有一消防隊.在聽力考試期間,消防隊突然接到報警電話,告知在位于C點北偏東75°方向的F點處突發(fā)火災(zāi),消防隊必須立即趕往救火.已知消防車的警報聲傳播半徑為100米,若消防車的警報聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?說明理由.(取1.732)25.(10分)將一個等邊三角形紙片AOB放置在平面直角坐標(biāo)系中,點O(0,0),點B(6,0).點C、D分別在OB、AB邊上,DC∥OA,CB=2.(I)如圖①,將△DCB沿射線CB方向平移,得到△D′C′B′.當(dāng)點C平移到OB的中點時,求點D′的坐標(biāo);(II)如圖②,若邊D′C′與AB的交點為M,邊D′B′與∠ABB′的角平分線交于點N,當(dāng)BB′多大時,四邊形MBND′為菱形?并說明理由.(III)若將△DCB繞點B順時針旋轉(zhuǎn),得到△D′C′B,連接AD′,邊D′C′的中點為P,連接AP,當(dāng)AP最大時,求點P的坐標(biāo)及AD′的值.(直接寫出結(jié)果即可).26.(12分)如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設(shè)其橫坐標(biāo)為m.(1)求拋物線的解析式;(2)若動點P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.27.(12分)已知OA,OB是⊙O的半徑,且OA⊥OB,垂足為O,P是射線OA上的一點(點A除外),直線BP交⊙O于點Q,過Q作⊙O的切線交射線OA于點E.(1)如圖①,點P在線段OA上,若∠OBQ=15°,求∠AQE的大?。唬?)如圖②,點P在OA的延長線上,若∠OBQ=65°,求∠AQE的大?。?/p>
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
由根與系數(shù)的關(guān)系得出x1+x2=5,x1?x2=2,將其代入x1+x2?x1?x2中即可得出結(jié)論.【詳解】解:∵方程x2?5x+2=0的兩個解分別為x1,x2,∴x1+x2=5,x1?x2=2,∴x1+x2?x1?x2=5?2=1.故選D.【點睛】本題考查了根與系數(shù)的關(guān)系,解題的關(guān)鍵是根據(jù)根與系數(shù)的關(guān)系得出x1+x2=5,x1?x2=2.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)根與系數(shù)的關(guān)系得出兩根之和與兩根之積是關(guān)鍵.2、A【解析】
原式變形后,利用平方差公式計算即可得出答案.【詳解】解:原式=(2000+1)×(2000-1)=20002-1,故選A.【點睛】此題考查了平方差公式,熟練掌握平方差公式是解本題的關(guān)鍵.3、D【解析】
①利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率,n=400,數(shù)值較小,不能近似的看為概率,①錯誤;②利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率,可得②正確;③用4000乘以綠豆發(fā)芽的的概率即可求得綠豆發(fā)芽的粒數(shù),③正確.【詳解】①當(dāng)n=400時,綠豆發(fā)芽的頻率為0.955,所以綠豆發(fā)芽的概率大約是0.955,此推斷錯誤;②根據(jù)上表當(dāng)每批粒數(shù)足夠大時,頻率逐漸接近于0.950,所以估計綠豆發(fā)芽的概率是0.95,此推斷正確;③若n為4000,估計綠豆發(fā)芽的粒數(shù)大約為4000×0.950=3800粒,此結(jié)論正確.故選D.【點睛】本題考查利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.4、B【解析】
直接利用平均數(shù)的求法進而得出x的值,再利用中位數(shù)的定義求出答案.【詳解】∵一組數(shù)據(jù)1,7,x,9,5的平均數(shù)是2x,∴,解得:,則從大到小排列為:3,5,1,7,9,故這組數(shù)據(jù)的中位數(shù)為:1.故選B.【點睛】此題主要考查了中位數(shù)以及平均數(shù),正確得出x的值是解題關(guān)鍵.5、C【解析】試題分析:觀察可得,只有選項C的主視圖和左視圖相同,都為,故答案選C.考點:簡單幾何體的三視圖.6、D【解析】
根據(jù)題意得出△ABE∽△CDE,進而利用相似三角形的性質(zhì)得出答案.【詳解】解:由題意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴DCAB即1.5AB解得:AB=6,故選:D.【點睛】本題考查的是相似三角形在實際生活中的應(yīng)用,根據(jù)題意得出△ABE∽△CDE是解答此題的關(guān)鍵.7、C【解析】
A、前年①的收入為60000×=19500,去年①的收入為80000×=26000,此選項錯誤;B、前年③的收入所占比例為×100%=30%,去年③的收入所占比例為×100%=32.5%,此選項錯誤;C、去年②的收入為80000×=28000=2.8(萬元),此選項正確;D、前年年收入即為①②③三種農(nóng)作物的收入,此選項錯誤,故選C.【點睛】本題主要考查扇形統(tǒng)計圖,解題的關(guān)鍵是掌握扇形統(tǒng)計圖是用整個圓表示總數(shù)用圓內(nèi)各個扇形的大小表示各部分?jǐn)?shù)量占總數(shù)的百分?jǐn)?shù),并且通過扇形統(tǒng)計圖可以很清楚地表示出各部分?jǐn)?shù)量同總數(shù)之間的關(guān)系.8、A【解析】
用科學(xué)記數(shù)法表示較大的數(shù)時,一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【詳解】39000000000=3.9×1.故選A.【點睛】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>10時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).9、D【解析】
根據(jù)“平面直角坐標(biāo)系中任意一點P(x,y),關(guān)于原點的對稱點是(-x,-y),即關(guān)于原點的對稱點,橫縱坐標(biāo)都變成相反數(shù)”解答.【詳解】解:根據(jù)關(guān)于原點對稱的點的坐標(biāo)的特點,∴點A(-2,3)關(guān)于原點對稱的點的坐標(biāo)是(2,-3),故選D.【點睛】本題主要考查點關(guān)于原點對稱的特征,解決本題的關(guān)鍵是要熟練掌握點關(guān)于原點對稱的特征.10、C【解析】
先根據(jù)平行線的性質(zhì)得出∠CBE=∠E=60°,再根據(jù)三角形的外角性質(zhì)求出∠C的度數(shù)即可.【詳解】∵BC∥DE,∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE,∴∠C=∠CBE﹣∠C=60°﹣35°=25°,故選C.【點睛】本題考查了平行線的性質(zhì)、三角形外角的性質(zhì),熟練掌握三角形外角的性質(zhì)是解題的關(guān)鍵.11、A【解析】
解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足為G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,∴AG==2,∴AE=2AG=4;∴S△ABE=AE?BG=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,則S△CEF=S△ABE=.故選A.【點睛】本題考查1.相似三角形的判定與性質(zhì);2.平行四邊形的性質(zhì),綜合性較強,掌握相關(guān)性質(zhì)定理正確推理論證是解題關(guān)鍵.12、B【解析】畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出恰好抽到1班和2班的結(jié)果數(shù),然后根據(jù)概率公式求解.解:畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中恰好抽到1班和2班的結(jié)果數(shù)為2,所以恰好抽到1班和2班的概率=212故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2.1.【解析】
根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得乙車的速度和到達A地時所用的時間,從而可以解答本題.【詳解】由題意可得,甲車到達C地用時4個小時,乙車的速度為:200÷(3.1﹣1)=80km/h,乙車到達A地用時為:(200+240)÷80+1=6.1(小時),當(dāng)乙車到達A地時,甲車已在C地休息了:6.1﹣4=2.1(小時),故答案為:2.1.【點睛】本題考查了一次函數(shù)的圖象,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.14、【解析】分析:按照二次根式的相關(guān)運算法則和性質(zhì)進行計算即可.詳解:∵,∴.故答案為:.點睛:熟記二次根式的以下性質(zhì)是解答本題的關(guān)鍵:(1);(2)=.15、1【解析】
先根據(jù)根的判別式求出c的取值范圍,然后在范圍內(nèi)隨便取一個值即可.【詳解】解得所以可以取故答案為:1.【點睛】本題主要考查根的判別式,掌握根的判別式與根個數(shù)的關(guān)系是解題的關(guān)鍵.16、60°【解析】試題解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC繞點C順時針旋轉(zhuǎn)至△A′B′C時點A′恰好落在AB上,∴AC=A′C,∴△A′AC是等邊三角形,∴∠ACA′=60°,∴旋轉(zhuǎn)角為60°.故答案為60°.17、1【解析】試題解析:3-2=1.18、.【解析】
解:∵把x=1分別代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P為y軸上的任意一點,∴點P到直線BC的距離為1.∴△PAB的面積.故答案為:.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、x=,x=﹣2【解析】
方程兩邊乘最簡公分母,可以把分式方程轉(zhuǎn)化為整式方程求解.【詳解】,則2x(x+1)=3(1﹣x),2x2+5x﹣3=0,(2x﹣1)(x+3)=0,解得:x1=,x2=﹣3,檢驗:當(dāng)x=,x=﹣2時,2(x+1)(1﹣x)均不等于0,故x=,x=﹣2都是原方程的解.【點睛】本題考查解分式方程的能力.(1)解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解;(2)解分式方程一定注意要驗根;(3)去分母時要注意符號的變化.20、x=15,y=1【解析】
根據(jù)概率的求法:在圍棋盒中有x顆黑色棋子和y顆白色棋子,共x+y顆棋子,如果它是黑色棋子的概率是,有成立.化簡可得y與x的函數(shù)關(guān)系式;
(2)若往盒中再放進10顆黑色棋子,在盒中有10+x+y顆棋子,則取得黑色棋子的概率變?yōu)椋Y(jié)合(1)的條件,可得,解可得x=15,y=1.【詳解】依題意得,,化簡得,,解得,.,檢驗當(dāng)x=15,y=1時,,,∴x=15,y=1是原方程的解,經(jīng)檢驗,符合題意.答:x=15,y=1.【點睛】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.21、(1)y=﹣x+,y=;(2)12;(3)x<﹣2或0<x<4.【解析】
(1)將點A坐標(biāo)代入解析式,可求解析式;(2)一次函數(shù)和反比例函數(shù)解析式組成方程組,求出點B坐標(biāo),即可求△ABF的面積;(3)直接根據(jù)圖象可得.【詳解】(1)∵一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=(k≠0)圖象交于A(﹣3,2)、B兩點,∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6∴b=,k=﹣6∴一次函數(shù)解析式y(tǒng)=﹣,反比例函數(shù)解析式y(tǒng)=.(2)根據(jù)題意得:,解得:,∴S△ABF=×4×(4+2)=12(3)由圖象可得:x<﹣2或0<x<4【點睛】本題考查了反比例函數(shù)圖象與一次函數(shù)圖象的交點問題,待定系數(shù)法求解析式,熟練運用函數(shù)圖象解決問題是本題的關(guān)鍵.22、(1)證明見解析;(2).【解析】
(1)連接OD,由OD=OB,利用等邊對等角得到一對角相等,再由已知角相等,等量代換得到∠1=∠3,求出∠4為90°,即可得證;
(2)設(shè)圓的半徑為r,利用銳角三角函數(shù)定義求出AB的長,再利用勾股定理列出關(guān)于r的方程,求出方程的解即可得到結(jié)果.【詳解】(1)證明:連接,,,,,在中,,,,則為圓的切線;(2)設(shè)圓的半徑為,在中,,根據(jù)勾股定理得:,,在中,,,根據(jù)勾股定理得:,在中,,即,解得:.【點睛】此題考查了切線的判定與性質(zhì),以及勾股定理,熟練掌握切線的判定與性質(zhì)是解本題的關(guān)鍵.23、(1)y=﹣x2+2x+3;(2)DE+DF有最大值為;(3)①存在,P的坐標(biāo)為(,)或(,);②<t<.【解析】
(1)設(shè)拋物線解析式為y=a(x+1)(x﹣3),根據(jù)系數(shù)的關(guān)系,即可解答(2)先求出當(dāng)x=0時,C的坐標(biāo),設(shè)直線AC的解析式為y=px+q,把A,C的坐標(biāo)代入即可求出AC的解析式,過D作DG垂直拋物線對稱軸于點G,設(shè)D(x,﹣x2+2x+3),得出DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,即可解答(3)①過點C作AC的垂線交拋物線于另一點P1,求出直線PC的解析式,再結(jié)合拋物線的解析式可求出P1,過點A作AC的垂線交拋物線于另一點P2,再利用A的坐標(biāo)求出P2,即可解答②觀察函數(shù)圖象與△ACQ為銳角三角形時的情況,即可解答【詳解】解:(1)設(shè)拋物線解析式為y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴拋物線解析式為y=﹣x2+2x+3;(2)當(dāng)x=0時,y=﹣x2+2x+3=3,則C(0,3),設(shè)直線AC的解析式為y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直線AC的解析式為y=3x+3,如答圖1,過D作DG垂直拋物線對稱軸于點G,設(shè)D(x,﹣x2+2x+3),∵DF∥AC,∴∠DFG=∠ACO,易知拋物線對稱軸為x=1,∴DG=x-1,DF=(x-1),∴DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,∴當(dāng)x=,DE+DF有最大值為;答圖1答圖2(3)①存在;如答圖2,過點C作AC的垂線交拋物線于另一點P1,∵直線AC的解析式為y=3x+3,∴直線PC的解析式可設(shè)為y=x+m,把C(0,3)代入得m=3,∴直線P1C的解析式為y=x+3,解方程組,解得或,則此時P1點坐標(biāo)為(,);過點A作AC的垂線交拋物線于另一點P2,直線AP2的解析式可設(shè)為y=x+n,把A(﹣1,0)代入得n=,∴直線PC的解析式為y=,解方程組,解得或,則此時P2點坐標(biāo)為(,),綜上所述,符合條件的點P的坐標(biāo)為(,)或(,);②<t<.【點睛】此題考查二次函數(shù)綜合題,解題關(guān)鍵在于把已知點代入解析式求值和作輔助線.24、不需要改道行駛【解析】
解:過點A作AH⊥CF交CF于點H,由圖可知,∵∠ACH=75°-15°=60°,∴.∵AH>100米,∴消防車不需要改道行駛.過點A作AH⊥CF交CF于點H,應(yīng)用三角函數(shù)求出AH的長,大于100米,不需要改道行駛,不大于100米,需要改道行駛.25、(Ⅰ)D′(3+,3);(Ⅱ)當(dāng)BB'=時,四邊形MBND'是菱形,理由見解析;(Ⅲ)P().【解析】
(Ⅰ)如圖①中,作DH⊥BC于H.首先求出點D坐標(biāo),再求出CC′的長即可解決問題;(Ⅱ)當(dāng)BB'=時,四邊形MBND'是菱形.首先證明四邊形MBND′是平行四邊形,再證明BB′=BC′即可解決問題;(Ⅲ)在△ABP中,由三角形三邊關(guān)系得,AP<AB+BP,推出當(dāng)點A,B,P三點共線時,AP最大.【詳解】(Ⅰ)如圖①中,作DH⊥BC于H,∵△AOB是等邊三角形,DC∥OA,∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,∴△CDB是等邊三角形,∵CB=2,DH⊥CB,∴CH=HB=,DH=3,∴D(6﹣,3),∵C′B=3,∴CC′=2﹣3,∴DD′=CC′=2﹣3,∴D′(3+,3).(Ⅱ)當(dāng)BB'=時,四邊形MBND'是菱形,理由:如圖②中,∵△ABC是等邊三角形,∴∠ABO=60°,∴∠ABB'=180°﹣∠ABO=120°,∵BN是∠ACC'的角平分線,∴∠NBB′'=∠ABB'=60°=∠D′C′B,∴D'C'∥BN,∵AB∥B′D′∴四邊形MBND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MC′B'和△NBB'是等邊三角形,∴MC=CE',NC=CC',∵B'C'=2,∵四邊形MBND'是菱形,∴BN=BM,∴BB'=B'C'=;(Ⅲ)如圖連接BP,在△ABP中,由三角形三邊關(guān)系得,AP<AB+BP,∴當(dāng)點A,B,P三點共線時,AP最大,如圖③中,在△D'BE'中,由P為D'E的中點,得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'==2.此時P(,﹣).【點睛】此題是四邊形綜合題,主要考查了平行四邊形的判定和性質(zhì),菱形的性質(zhì),平移和旋轉(zhuǎn)的性質(zhì),等邊三角形的判定和性質(zhì),勾股定理,解(2)的關(guān)鍵是四邊形MCND'是平行四邊形,解(3)的關(guān)鍵是判斷出點A,C,P三點共線時,AP最大.26、(1)y=x2-4x+3.(2)當(dāng)m=時,四邊形AOPE面積最大,最大值為.(3)P點的坐標(biāo)為:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用對稱性可得點D的坐標(biāo),利用交點式可得拋物線的解析式;(2)設(shè)P(m,m2-4m+3),根據(jù)OE的解析式表示點G的坐標(biāo),表示PG的長,根據(jù)面積和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 南山區(qū)自主創(chuàng)新產(chǎn)業(yè)發(fā)展專項資金文化產(chǎn)業(yè)發(fā)展政策解讀課件2
- 《社保及公積金培訓(xùn)》課件
- 2025版土地抵押資產(chǎn)證券化合同模板3篇
- 2025年商業(yè)投資擔(dān)保協(xié)議
- 2025年兒童學(xué)習(xí)培訓(xùn)協(xié)議
- 2025年婚姻保險合同
- 二零二五年度木結(jié)構(gòu)建筑木工分包合同示范文本4篇
- 2025版學(xué)校體育設(shè)施租賃與運營管理協(xié)議2篇
- 二零二五年度公共資源交易財務(wù)監(jiān)管合同3篇
- 二手房租借轉(zhuǎn)讓合同范本(2024年修訂版)一
- 2025貴州貴陽市屬事業(yè)單位招聘筆試和高頻重點提升(共500題)附帶答案詳解
- 2024年廣東省公務(wù)員錄用考試《行測》試題及答案解析
- 結(jié)構(gòu)力學(xué)本構(gòu)模型:斷裂力學(xué)模型:斷裂力學(xué)實驗技術(shù)教程
- PDCA提高臥床患者踝泵運動的執(zhí)行率
- 黑色素的合成與美白產(chǎn)品的研究進展
- 金蓉顆粒-臨床用藥解讀
- 法治副校長專題培訓(xùn)課件
- 《幼兒園健康》課件精1
- 汽車、電動車電池火災(zāi)應(yīng)對
- 中醫(yī)藥適宜培訓(xùn)-刮痧療法教學(xué)課件
- 免疫組化he染色fishish
評論
0/150
提交評論