2022-2023學年四川省自貢市富順二中學數(shù)學九上期末監(jiān)測試題含解析_第1頁
2022-2023學年四川省自貢市富順二中學數(shù)學九上期末監(jiān)測試題含解析_第2頁
2022-2023學年四川省自貢市富順二中學數(shù)學九上期末監(jiān)測試題含解析_第3頁
2022-2023學年四川省自貢市富順二中學數(shù)學九上期末監(jiān)測試題含解析_第4頁
2022-2023學年四川省自貢市富順二中學數(shù)學九上期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.當x=1時,代數(shù)式2ax2+bx的值為5,當x=2時,代數(shù)式ax2+bx﹣3的值為()A.﹣ B.2 C.7 D.172.下列方程中,關于x的一元二次方程是()A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=03.一元二次方程4x2﹣3x+=0根的情況是()A.沒有實數(shù)根 B.只有一個實數(shù)根C.有兩個相等的實數(shù)根 D.有兩個不相等的實數(shù)根4.如圖,小穎周末到圖書館走到十字路口處,記不清前面哪條路通往圖書館,那么她能一次選對路的概率是()A. B. C. D.05.下列四個幾何體中,主視圖與俯視圖不同的幾何體是()A. B.C. D.6.如圖,在⊙O中,分別將、沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過圓心,若⊙O的半徑為4,則四邊形ABCD的面積是()A.8 B. C.32 D.7.在數(shù)軸上,點A所表示的實數(shù)為3,點B所表示的實數(shù)為a,⊙A的半徑為2,下列說法中不正確的是()A.當1<a<5時,點B在⊙A內B.當a<5時,點B在⊙A內C.當a<1時,點B在⊙A外D.當a>5時,點B在⊙A外8.如圖,是的直徑,點是延長線上一點,是的切線,點是切點,,若半徑為,則圖中陰影部分的面積為()A. B. C. D.9.如圖所示是二次函數(shù)y=ax2﹣x+a2﹣1的圖象,則a的值是()A.a=﹣1 B.a= C.a=1 D.a=1或a=﹣110.如圖,拋物線y=ax2+bx+c(a>0)的對稱軸是直線x=1,且經過點P(3,0),則a-b+c的值為(

)A.0

B.-1

C.1

D.2二、填空題(每小題3分,共24分)11.若拋物線與軸沒有交點,則的取值范圍是__________.12.點向左平移兩個單位后恰好位于雙曲線上,則__________.13.從0,1,2,3,4中任取兩個不同的數(shù),其乘積為0的概率是___________.14.如圖,在平面直角坐標系中,OB在x軸上,∠ABO=90°,點A的坐標為(2,4),將△AOB繞點A逆時針旋轉90°,點O的對應點C恰好落在反比例函數(shù)y=的圖象上,則k的值為_____.15.已知是一元二次方程的一個解,則的值是__________.16.拋物線y=3(x﹣2)2+5的頂點坐標是_____.17.__________.18.一個小球在如圖所示的方格地板上自由滾動,并隨機停留在某塊地板上,每塊地板大小、質地完全相同,那么該小球停留在黑色區(qū)域的概率是______.三、解答題(共66分)19.(10分)在等邊三角形ABC中,點D,E分別在BC,AC上,且DC=AE,AD與BE交于點P,連接PC.(1)證明:ΔABE≌ΔCAD.(2)若CE=CP,求證∠CPD=∠PBD.(3)在(2)的條件下,證明:點D是BC的黃金分割點.20.(6分)在平面直角坐標系中,己知,.點從點開始沿邊向點以的速度移動;點從點開始沿邊內點以的速度移動.如果、同時出發(fā),用表示移動的時間.(1)用含的代數(shù)式表示:線段_______;______;(2)當為何值時,四邊形的面積為.(3)當與相似時,求出的值.21.(6分)如圖所示,某學校有一邊長為20米的正方形區(qū)域(四周陰影是四個全等的矩形,記為區(qū)域甲;中心區(qū)是正方形,記為區(qū)域乙).區(qū)域甲建設成休閑區(qū),區(qū)域乙建成展示區(qū),已知甲、乙兩個區(qū)域的建設費用如下表:區(qū)域甲乙價格(百元米2)65設矩形的較短邊的長為米,正方形區(qū)域建設總費用為百元.(1)的長為米(用含的代數(shù)式表示);(2)求關于的函數(shù)解析式;(3)當中心區(qū)的邊長要求不低于8米且不超過12米時,預備建設資金220000元夠用嗎?請利用函數(shù)的增減性來說明理由.22.(8分)觀察下列各式:﹣1×=﹣1+,﹣=﹣,﹣=﹣(1)猜想:﹣×=(寫成和的形式)(2)你發(fā)現(xiàn)的規(guī)律是:﹣×=;(n為正整數(shù))(3)用規(guī)律計算:(﹣1×)+(﹣)+(﹣)+…+(﹣×)+(﹣×).23.(8分)如圖,在△ABC中,AC⊥BC,∠ABC=30°,點D是CB延長線上一點,且BD=BA,求tan∠ADC的值.24.(8分)拋物線上部分點的橫坐標,縱坐標的對應值如下表:-3-2-1010430(1)把表格填寫完整;(2)根據上表填空:①拋物線與軸的交點坐標是________和__________;②在對稱軸右側,隨增大而_______________;③當時,則的取值范圍是_________________;(3)請直接寫出拋物線的解析式.25.(10分)如圖,拋物線y=﹣x2+bx+c與x軸相交于A、B兩點,與y軸相交于點C,且點B與點C的坐標分別為B(3,0),C(0,3),點M是拋物線的頂點.(1)求二次函數(shù)的關系式;(2)點P為線段MB上一個動點,過點P作PD⊥x軸于點D.若OD=m,△PCD的面積為S,①求S與m的函數(shù)關系式,寫出自變量m的取值范圍.②當S取得最值時,求點P的坐標;(3)在MB上是否存在點P,使△PCD為直角三角形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.26.(10分)計算:2cos30°﹣2sin45°+3tan60°+|1﹣|.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】直接把x=1代入進而得出2a+b=5,再把x=2代入ax2+bx﹣3,即可求出答案.【詳解】∵當x=1時,代數(shù)式2ax2+bx的值為5,∴2a+b=5,∴當x=2時,代數(shù)式ax2+bx﹣3=4a+2b﹣3=2(2a+b)﹣3=2×5﹣3=1.故選:C.【點睛】本題主要考查求代數(shù)式的值,整體思想方法的應用,是解題的關鍵.2、C【分析】一元二次方程必須滿足四個條件:(1)未知數(shù)的最高次數(shù)是2;(2)二次項系數(shù)不為0;(3)是整式方程;(4)含有一個未知數(shù).由這四個條件對四個選項進行驗證,滿足這四個條件者為正確答案.【詳解】解:A、x2﹣x(x+3)=0,化簡后為﹣3x=0,不是關于x的一元二次方程,故此選項不合題意;B、ax2+bx+c=0,當a=0時,不是關于x的一元二次方程,故此選項不合題意;C、x2﹣2x﹣3=0是關于x的一元二次方程,故此選項符合題意;D、x2﹣2y﹣1=0含有2個未知數(shù),不是關于x的一元二次方程,故此選項不合題意;故選:C.【點睛】此題主要考查了一元二次方程的定義,判斷一個方程是否是一元二次方程應注意抓住5個方面:“化簡后”;“一個未知數(shù)”;“未知數(shù)的最高次數(shù)是2”;“二次項的系數(shù)不等于0”;“整式方程”.3、D【分析】根據方程的系數(shù)結合根的判別式,即可得出△>0,由此即可得出原方程有兩個不相等的實數(shù)根.【詳解】解:4x2﹣3x+=0,這里a=4,b=﹣3,c=,b2﹣4ac=(﹣3)2﹣4×=5>0,所以方程有兩個不相等的實數(shù)根,故選:D.【點睛】本題考查的知識點是根據一元二次方程根的判別式來判斷方程的解的情況,熟記公式是解此題的關鍵.4、B【分析】在通往圖書館的路口有3條路,一次只能選一條路,則答案可解.【詳解】在通往圖書館的路口有3條路,一次只能選一條路,她能一次選對路的概率是故選:B.【點睛】本題主要考查隨機事件的概念,掌握隨機事件概率的求法是解題的關鍵.5、C【分析】根據正方體的主視圖與俯視圖都是正方形,圓柱橫著放置時,主視圖與俯視圖都是長方形,球體的主視圖與俯視圖都是圓形,只有圓錐的主視圖與俯視圖不同進行分析判定.【詳解】解:圓錐的主視圖與俯視圖分別為圓形、三角形,故選:C.【點睛】本題考查簡單的幾何體的三視圖,注意掌握從不同方向看物體的形狀所得到的圖形可能不同.6、B【分析】過O作OH⊥AB交⊙O于E,延長EO交CD于G,交⊙O于F,連接OA,OB,OD,根據平行線的性質得到EF⊥CD,根據折疊的性質得到OH=OA,進而推出△AOD是等邊三角形,得到D,O,B三點共線,且BD為⊙O的直徑,求得∠DAB=90°,同理,∠ABC=∠ADC=90°,得到四邊形ABCD是矩形,于是得到結論.【詳解】過O作OH⊥AB交⊙O于E,延長EO交CD于G,交⊙O于F,連接OA,OB,OD.∵AB∥CD,∴EF⊥CD.∵分別將、沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過圓心,∴OH=OA,∴∠HAO=30°,∴∠AOH=60°,同理∠DOG=60°,∴∠AOD=60°,∴△AOD是等邊三角形.∵OA=OB,∴∠ABO=∠BAO=30°,∴∠AOB=120°,∴∠AOD+∠AOB=180°,∴D,O,B三點共線,且BD為⊙O的直徑,∴∠DAB=90°,同理,∠ABC=∠ADC=90°,∴四邊形ABCD是矩形,∴AD=AO=4,AB=AD=4,∴四邊形ABCD的面積是16.故選B.【點睛】本題考查了垂徑定理,圓周角定理,矩形的判定和性質,正確的作出輔助線是解答本題的關鍵.7、B【解析】試題解析:由于圓心A在數(shù)軸上的坐標為3,圓的半徑為2,∴當d=r時,⊙A與數(shù)軸交于兩點:1、5,故當a=1、5時點B在⊙A上;當d<r即當1<a<5時,點B在⊙A內;當d>r即當a<1或a>5時,點B在⊙A外.由以上結論可知選項A、C、D正確,選項B錯誤.故選B.點睛:若用d、r分別表示點到圓心的距離和圓的半徑,則當d>r時,點在圓外;當d=r時,點在圓上;當d<r時,點在圓內.8、B【分析】連接OC,求出∠COD和∠D,求出邊DC長,分別求出三角形OCD的面積和扇形COB的面積,即可求出答案.【詳解】連接OC,

∵AO=CO,∠CAB=30°,

∴∠COD=2∠CAB=60°,

∵DC切⊙O于C,

∴OC⊥CD,

∴∠OCD=90°,

∴∠D=90°-∠COD=90°-60°=30°,

在Rt△OCD中,∠OCD=90°,∠D=30°,OC=4,∴,∴陰影部分的面積是:故選:B.【點睛】本題考查了扇形的面積,三角形的面積的應用,還考查了等腰三角形性質,三角形的內角和定理,切線的性質,解此題的關鍵是求出扇形和三角形的面積.9、C【解析】由圖象得,此二次函數(shù)過原點(0,0),

把點(0,0)代入函數(shù)解析式得a2-1=0,解得a=±1;

又因為此二次函數(shù)的開口向上,所以a>0;

所以a=1.

故選C.10、A【解析】試題分析:因為對稱軸x=1且經過點P(3,1)所以拋物線與x軸的另一個交點是(-1,1)代入拋物線解析式y(tǒng)=ax2+bx+c中,得a-b+c=1.故選A.考點:二次函數(shù)的圖象.二、填空題(每小題3分,共24分)11、;【分析】利用根的判別式△<0列不等式求解即可.【詳解】解:∵拋物線與軸沒有交點,∴,即,解得:;故答案為:.【點睛】本題考查了拋物線與x軸的交點問題,利用根的判別式列出不等式是解題的關鍵.12、【分析】首先求出點P平移后的坐標,然后代入雙曲線即可得解.【詳解】點向左平移兩個單位后的坐標為,代入雙曲線,得∴故答案為-1.【點睛】此題主要考查坐標的平移以及雙曲線的性質,熟練掌握,即可解題.13、【分析】首先根據題意畫出表格,然后由表格求得所有等可能的結果與其乘積等于0的情況,再利用概率公式即可求得答案;【詳解】解:畫表格得:共由20種等可能性結果,其中乘積為0有8種,故乘積為0的概率為,故答案為:.【點睛】本題主要考查了列表法與樹狀圖法,掌握列表法與樹狀圖法是解題的關鍵.14、1【解析】根據題意和旋轉的性質,可以得到點C的坐標,把點C坐標代入反比例函數(shù)y=中,即可求出k的值.【詳解】∵OB在x軸上,∠ABO=90°,點A的坐標為(2,4),∴OB=2,AB=4∵將△AOB繞點A逆時針旋轉90°,∴AD=4,CD=2,且AD//x軸∴點C的坐標為(6,2),∵點O的對應點C恰好落在反比例函數(shù)y=的圖象上,

∴k=2,故答案為1.【點睛】本題考查反比例函數(shù)圖象上點的坐標特征、坐標與圖形的變化-旋轉,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.15、4【分析】把x=-2代入x2+mx+4=0可得關于m的一元一次方程,解方程即可求出m的值.【詳解】∵是一元二次方程的一個解,∴4-2m+4=0,解得:m=4,故答案為:4【點睛】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.16、(2,5).【解析】試題分析:由于拋物線y=a(x﹣h)2+k的頂點坐標為(h,k),由此即可求解.解:∵拋物線y=3(x﹣2)2+5,∴頂點坐標為:(2,5).故答案為(2,5).考點:二次函數(shù)的性質.17、【分析】直接代入特殊角的三角函數(shù)值進行計算即可.【詳解】.故答案為:.【點睛】本題考查了特殊角的三角函數(shù)值,熟記特殊角的三角函數(shù)值是解題的關鍵.18、【分析】先求出黑色方磚在整個地板中所占的比值,再根據其比值即可得出結論.【詳解】由圖可知,黑色方磚6塊,共有16塊方磚,

∴黑色方磚在整個地板中所占的比值,

∴小球最終停留在黑色區(qū)域的概率是,故答案為:.【點睛】本題考查了幾何概率,用到的知識點為:幾何概率=相應的面積與總面積之比.三、解答題(共66分)19、(1)見解析;(2)見解析;(3)見解析【分析】(1)因為△ABC是等邊三角形,所以AB=AC,∠BAE=∠ACD=60°,又AE=CD,即可證明ΔABE≌ΔCAD;(2)設則由等邊對等角可得可得以及,故;(3)可證可得,故由于可得,根據黃金分割點可證點是的黃金分割點;【詳解】證明:(1)∵△ABC是等邊三角形,∴AB=AC,∠BAE=∠ACD=60°,在ΔABE與ΔCDA中,AB=AC,∠BAE=∠ACD=60°,AE=CD,∴△AEB≌△CDA;(2)由(1)知,則,設,則,∵,∴,∴,又,∴;(3)在和中,,,∴,∴,∴,又,∴,∴點是的黃金分割點;【點睛】本題主要考查了等邊三角形的性質,全等三角形的判定與性質,掌握等邊三角形的性質,全等三角形的判定與性質是解題的關鍵.20、(1)2t,(5﹣t);(2)t=2或3;(3)t或1.【分析】(1)根據路程=速度×時間可求解;(2)根據S四邊形PABQ=S△ABO﹣S△PQO列出方程求解;(3)分或兩種情形列出方程即可解決問題.【詳解】(1)OP=2tcm,OQ=(5﹣t)cm.故答案為:2t,(5﹣t).(2)∵S四邊形PABQ=S△ABO﹣S△PQO,∴1910×52t×(5﹣t),解得:t=2或3,∴當t=2或3時,四邊形PABQ的面積為19cm2.(3)∵△POQ與△AOB相似,∠POQ=∠AOB=90°,∴或.①當,則,∴t,②當時,則,∴t=1.綜上所述:當t或1時,△POQ與△AOB相似.【點睛】本題是相似綜合題,考查相似三角形的判定和性質、坐標與圖形的性質、三角形的面積等知識,解答本題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.21、(1);(2)y=;(3)預備建設資金220000元不夠用,見解析【分析】(1)根據矩形和正方形的性質解答即可;

(2)利用矩形的面積公式和正方形的面積公式解答即可;

(3)利用二次函數(shù)的性質和最值解答即可.【詳解】解:(1)設矩形的較短邊的長為米,,根據圖形特點.(2)由題意知:化簡得:(百元)(3)由題知:,解得,當x=4時,,當x=6時,,將函數(shù)解析式變形:,當時,y隨x的增加而減少,所以(百元),而,預備建設資金220000元不夠用.【點睛】此題主要考查了二次函數(shù)的應用以及配方法求最值和正方形的性質等知識,正確得出各部分的邊長是解題關鍵.22、(1)﹣;(2)﹣;(3)﹣.【分析】(1)根據所給式子進行求解即可;(2)根據已知式子可得到;(3)分別算出括號里的式子然后相加即可;【詳解】解:(1)由所給的已知發(fā)現(xiàn)乘積的等于和,∴,故答案為;(2),故答案為;(3),,.【點睛】本題主要考查了找規(guī)律數(shù)字運算,準確計算是解題的關鍵.23、2﹣.【分析】設AC=m,解直角三角形求出AB,BC,BD即可解決問題.【詳解】設AC=m,在Rt△ABC中,∵∠C=90°,∠ABC=30°,∴AB=2AC=2m,BC=AC=m,∴BD=AB=2m,DC=2m+m,∴tan∠ADC===.【點睛】本題考查求正切值,熟記正切的定義,解出直角三角形的邊長是解題的關鍵.24、(1)2;(2)①拋物線與軸的交點坐標是和;②隨增大而減?。虎鄣娜≈捣秶?;(2).【分析】(1)利用表中對應值的特征和拋物線的對稱性得到拋物線的對稱軸為直線x=-1,則x=0和x=-2時,y的值相等,都為2;

(2)①利用表中y=0時x的值可得到拋物線與x軸的交點坐標;

②設交點式y(tǒng)=a(x+2)(x-1),再把(0,2)代入求出a得到拋物線解析式為y=-x2-2x+2,則可判斷拋物線的頂點坐標為(-1,1),拋物線開口向下,然后根據二次函數(shù)的性質解決問題;③由于x=-2時,y=2;當x=2時,y=-5,結合二次函數(shù)的性質可確定y的取值范圍;

(2)由(2)得拋物線解析式.【詳解】解:(1)∵x=-2,y=0;x=1,y=0,

∴拋物線的對稱軸為直線x=-1,

∴x=0和x=-2時,y=2;故答案是:2;

(2)①∵x=-2,y=0;x=1,y=0,∴拋物線與x軸的交點坐標是(-2,0)和(1,0);故答案是:(-2,0)和(1,0);

②設拋物線解析式為y=a(x+2)(x-1),

把(0,2)代入得2=-2a,解得a=-1,

∴拋物線解析式為y=-(x+2)(x-1),即y=-x2-2x+2,

拋物線的頂點坐標為(-1,1),拋物線開口向下,

∴在對稱軸右側,y隨x增大而減??;故答案是:減小;

③當x=-2時,y=2;當x=2時,y=-1-1+2=-5,當x=-1,y有最大值為1,

∴當-2<x<2時,則y的取值范圍是-5<y≤1.故答案是:-5<y≤1;

(2)由(2)得拋物線解析式為y=-x2-2x+2,

故答案是:y=-x2-2x+2.【點睛】本題考查了拋物線解析式的求法及與x軸的交點問題:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點問題轉化

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論