高中必修五數(shù)學(xué)數(shù)列講義_第1頁
高中必修五數(shù)學(xué)數(shù)列講義_第2頁
高中必修五數(shù)學(xué)數(shù)列講義_第3頁
高中必修五數(shù)學(xué)數(shù)列講義_第4頁
高中必修五數(shù)學(xué)數(shù)列講義_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

高中必修五數(shù)學(xué)數(shù)列講義高中必修五數(shù)學(xué)數(shù)列講義高中必修五數(shù)學(xué)數(shù)列講義高中必修五數(shù)學(xué)數(shù)列講義第二章數(shù)列第一:數(shù)列及其通公式一.?dāng)?shù)列的見解1.?dāng)?shù)列的定:;2.表示法:;3.?dāng)?shù)列的分:;4.通公式:;5.推公式的見解:;注意:①數(shù)列與會合有本的區(qū);②與數(shù)的區(qū);③{an}與an的區(qū);④不是每一個(gè)數(shù)列都有通公式;⑤an是n的函數(shù)。二.?dāng)?shù)列通公式的求法1.依據(jù)數(shù)列的有限,寫出數(shù)列的通公式。1.已知數(shù)列{an}的前幾,寫出數(shù)列的一個(gè)通公式(1)1,4,9,16,??;an=;(2)2,4,6,8,??;an=;3927813,LL,n(3)1,3,1,3,1,;2345a=6(4)9,99,999,9999,??;an=;(5)7,77,777,7777,??;an=;2(6)7,-77,777,-7777,??;an=;(7)0.5,0.55,0.555,0.5555,??;an=;(8)1.-1,1,-1,??;an=;(9)1,0,1,0,??;an=;(10)11,101,1001,10001,??;an=;(11)11,22,33,44,??;an=;2345(12)1,3,7,5,LL;an=;24816(13)2,1,10,17,26,37,??;an=;37911132.?dāng)?shù)列1,3,2,6,5,15,14,x,y,z,122,??,中x,y,z的挨次是()A42,41,123B13,39,123C24,23,123D28,27,1233.?dāng)?shù)列1,1,2,3,5,8,??;的第7是。1為奇數(shù))4.?dāng)?shù)列{an}中,an,nn1(n2)為偶數(shù))(n{an}的前5是。5.已知函數(shù)f(x)x-1,anf(n)(nN*)x(1)求:an1;(2){an}是增數(shù)列是減數(shù)列?什么?32.已知數(shù)列的前n項(xiàng)和求數(shù)列的通項(xiàng)公式(1)已知數(shù)列{an}的前n項(xiàng)和為Sn2n2n1,求數(shù)列{an}的通項(xiàng)公式;(2)已知數(shù)列{an}的前n項(xiàng)和為Sn2n2n,求數(shù)列{an}的通項(xiàng)公式。注意:1.用數(shù)列的前n項(xiàng)和Sn求通項(xiàng)an的公式是:;2.什么時(shí)候運(yùn)用an=Sn-Sn-1求出的公式擁有通用性:。練習(xí):(3)已知數(shù)列{an}的前n項(xiàng)和為Sn(1)n1n,則通項(xiàng)an=;(4)已知數(shù)列{an}的前n項(xiàng)和為Sn32n則通項(xiàng)n=;,a(5)已知數(shù)列{an}的前n項(xiàng)和為Snlog1(1n),則通項(xiàng)an=;10(6)已知數(shù)列{an}的前n項(xiàng)和為Sn11L1n2n122n,則通項(xiàng)an2=;注意:(1)公式表示的是數(shù)列的前n項(xiàng)和與通項(xiàng)之間的關(guān)系。(2)要注意不要忽略n=1的情況,這是大家易犯錯(cuò)的地方。43.用遞推公式求數(shù)列的通項(xiàng)公式(1)數(shù)列{an}中,a12,anan1(n2,3,4,L),則它的前5項(xiàng)1an1是。(2)數(shù)列{an}中,a11,a22,an2an1an,則a7。(3)數(shù)列(4)數(shù)列

{an}{an}

中,知足中,知足

a12,an1an2,求數(shù)列{an}的通項(xiàng)公式;a12,an1ann,求數(shù)列{an}的通項(xiàng)公式;(5)數(shù)列(6)數(shù)列

{an}{an}

中,知足中,知足

a12,an12an,求數(shù)列{an}的通項(xiàng)公式;a12,an1nan,求數(shù)列{an}的通項(xiàng)公式;n1第二節(jié):等差數(shù)列.1.定義:假如一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫等差數(shù)列;這個(gè)常數(shù)叫做等差數(shù)列的公差,公差平常用字母d表示。2.通項(xiàng)公式:ana1(n1)d或anam(nm)d3.等差中項(xiàng):a,A,b成等差數(shù)列,A叫a,b的等差中項(xiàng)(注:隨意兩個(gè)數(shù)都有ab等差中項(xiàng))A24.證明一個(gè)數(shù)列是等差數(shù)列的方法:一般用an1and(常數(shù)),而不用其余等價(jià)形式,若的確沒法證明an1and,有時(shí)也可采納證明an1ananan1,(n2)來達(dá)成。5.等差數(shù)列的性質(zhì):5(1)d0,an單增;d0,an單減;d0,是常數(shù)列。(2)等差數(shù)列中隨意連續(xù)的三項(xiàng)也成等差數(shù)列,反之亦然。(3)一個(gè)數(shù)列是等差數(shù)列,則通項(xiàng)公式可寫成anknb(k,bR),反之亦然。一個(gè)數(shù)列是等差數(shù)列,則其前n項(xiàng)和可寫成SnAn2Bn(A,BR),反之亦然。(4)數(shù)列{an}是等差數(shù)列,若m+n=p+q,則amanapaq(5)數(shù)列{an}是等差數(shù)列,項(xiàng)數(shù)m,p,n成等差數(shù)列,那么am,ap,an也成等差數(shù)列。(6)數(shù)列{an}是等差數(shù)列,則Sm,S2mSm,S3mS2m仍成等差數(shù)列。二.等差數(shù)列的前n項(xiàng)和:n(a1an)或Snn(n1)Snna1d22練習(xí)與應(yīng)用:通項(xiàng)公式、前n項(xiàng)和公式的基本運(yùn)算1.在等差數(shù)列{an}中,a5=10,a12=31,求首項(xiàng)a1與公差d.2.在等差數(shù)列{an}中,a2=-5,a6=a4+6,那么a1=.3.在等差數(shù)列{an}中,a15=8,a20=20,則a25=.4.在等差數(shù)列{an}中,a2+a5+a8=9,a3a5a7=-21,求通項(xiàng)an.5.在等差數(shù)列{an}中,a15=8,a60=20,則a75=.6Sm,S2mSm,S3mS2m仍成等差數(shù)列6.在等差數(shù)列{an}中,S10=310,S20=1220,求Sn與通項(xiàng)an.若m+n=p+q,則amanapaq6.在等差數(shù)列{an}中,a3+a4+a5+a6+a7=450,則a2+a8=.3,a15是方程x2-6x-1=0的兩個(gè)根,求a7+a8+a9+a10+a11=.8.在等差數(shù)列{an}中,a32,則該數(shù)列的前5項(xiàng)和為()(A)10(B)16(C)20(D)329.在等差數(shù)列{an}中,Sn表示前n項(xiàng)和,且a2a818a5,則S9的值為()(A)18(B)60(C)54(D)2710.等差數(shù)列{an},S918,Sn240,an430,(n9),則項(xiàng)數(shù)n為()11.在等差數(shù)列{an}中,前4項(xiàng)的和為21,后4項(xiàng)的和為67,前n項(xiàng)的和為286,則項(xiàng)數(shù)n=.12.在等差數(shù)列{an}中,Sn表示前n項(xiàng)和,且S120,S130,當(dāng)Sn獲得最大值時(shí)的n值為()(A)6(B)7(C)12(D)不可以確立13.若{an}是等差數(shù)列,首項(xiàng)a10,a23a240,a23a240,則使前n項(xiàng)和Sn0建立的最大自然數(shù)n是()(A)48(B)47(C)46(D)45714(04年重慶卷.文理a10,a2003a20040,a2003.a2004是:()A4005B4006

9)若數(shù)列{an}是等差數(shù)列,首項(xiàng)0,則使前n項(xiàng)和Sn0建立的最大自然數(shù)nC4007D400815.等差數(shù)列{an},{bn}的前n項(xiàng)和為Sn,Tn,且Sn7n1,求a11.Tn4n27b1116.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若A:1B:2C:1D:-12

a55,則S9的值為()a39S517.在等差數(shù)列{an}中,am=n,an=m,且m≠n,則am+n=.18.已知等差數(shù)列{an},Sn是其前n項(xiàng)和,關(guān)于不相等的正整數(shù)m,n,有Snm,Smn,則Smn的值為.其奇數(shù)項(xiàng)和、偶數(shù)項(xiàng)和1、若等差數(shù)列共有偶數(shù)項(xiàng)2n項(xiàng)(奇數(shù)項(xiàng)、偶數(shù)項(xiàng)各n項(xiàng)):即S奇a1a3a5a2n1S偶a2a4a6a2n則S偶S奇nd,S偶S偶an1(中S奇S2nS奇an間一對)2、若等差數(shù)列共有奇數(shù)項(xiàng)2n1項(xiàng)(奇數(shù)項(xiàng)比偶數(shù)項(xiàng)多1項(xiàng)):即則

S奇a1a3a5a2n1a2n1S偶a2a4a6a2nS奇S偶an1(an1為中間項(xiàng)),S偶S奇S偶n(項(xiàng)數(shù)之比)S2n1n1S奇19..等差數(shù)列{an}共有2n-1項(xiàng),全部奇數(shù)項(xiàng)的和為132,全部偶數(shù)項(xiàng)的和為120,則n=.8假如等差數(shù)列{an}共有10項(xiàng),其奇數(shù)項(xiàng)之和為15,偶數(shù)項(xiàng)之和為30,則其公差為。21.假如等差數(shù)列{an}的項(xiàng)數(shù)是奇數(shù),a11,{an}的奇數(shù)項(xiàng)的和是175,偶數(shù)項(xiàng)的和是150,求這個(gè)等差數(shù)列的公差d。Sn的最值問題22.等差數(shù)列{an}中,an=2n-10,則Sn的最小值時(shí)n=.23.等差數(shù)列{an}中,an=2n-11,則Sn的最小值時(shí)n=.24.在等差數(shù)列{an}中,a125,S3S8,則前n項(xiàng)和Sn的最小值為()A:-80B:-76C:-75D:-7425.已知等差數(shù)列{an},Sn是其前n項(xiàng)和,且S5S6,S6S7,S7S8,則以下結(jié)論錯(cuò)誤的選項(xiàng)是()(A)d<0(B)a70(C)S9S5(D)S6與S7均為Sn的最大值.第三節(jié):等比數(shù)列一。等比數(shù)列及其性質(zhì)91。定義:(略)an1q(q0)(有既是等差又是等比的數(shù)列嗎?)an2。通項(xiàng)公式:ana1qn1;(anamqnm)3。等比中項(xiàng):a,G,b成等比數(shù)列,G叫a,b的等比中項(xiàng)。注:隨意兩個(gè)實(shí)數(shù)都有等差中項(xiàng),但不是隨意兩個(gè)實(shí)數(shù)都有等比中項(xiàng),只有兩個(gè)實(shí)數(shù)同號時(shí)才有等比中項(xiàng),等差中項(xiàng)只有一個(gè),但等比中項(xiàng)有兩個(gè)。4。證明數(shù)列是等比數(shù)列的基本方法:an1q(q0)an5。相關(guān)性質(zhì):(1)數(shù)列{an}是等比數(shù)列,若m+n=p+q,則amanapaq(2)正項(xiàng)等比數(shù)列的對數(shù)列是等差數(shù)列,等差數(shù)列的指數(shù)列是等比數(shù)列。(3)數(shù)列{an}是等比數(shù)列,則a1a2Lam,am1am2La2m,a2m1a2m2La3m成等比數(shù)列嗎?(4)數(shù)列{an}是等比數(shù)列,則a1a2Lam,am1am2La2m,a2m1a2m2La3m還是等比數(shù)列。練習(xí)與應(yīng)用:1。數(shù)列{an}是等比數(shù)列,則在①{anan1};②{anan1};③{anan1};④{an3};⑤{nan};⑥{lgan}這6個(gè)數(shù)列中仍成等比數(shù)列的是。102。數(shù)列{an}是等比數(shù)列,a34,a716,求公比q。333。等差數(shù)列a,b,c三項(xiàng)的和為12,且a,b,c+2成等比數(shù)列,求a的值。4。數(shù)列{an}是等比數(shù)列,a1a3a5a7a932,求a55。數(shù)列{an}是等比數(shù)列,a19,an1,q2,則這個(gè)數(shù)列的項(xiàng)數(shù)為()833A3B4C5D66。等比數(shù)列{an}中,an>0,a2a4+2a3a5+a4a6=25,則a3+a5=()A:5B:10C:15D:207。等比數(shù)列{an},a516,a88,a11()A:-4B:±4C:-2D:±28。等比數(shù)列{an},a3a8124,a4a7512,公比q為整數(shù),則a10。9.等比數(shù)列{an}中,a1a230,a3a460,則a5a6()A:90B:120C:15D:8010。等比數(shù)列{an}中,a9a10a,(a0),a19a20b,則a99a100()9B:(b)910D:(b)10A:b8C:b9aaaa11。{an}是各項(xiàng)為正數(shù)的等比數(shù)列,a5a69,則log3a1log3a2log3a10=11()A:12B:10C:8D:2log3512.已知數(shù)列{an}是各項(xiàng)都為正數(shù)的等比數(shù)列,設(shè)bnlog2an,求證數(shù)列{bn}是等差數(shù)列。13。已知等比數(shù)列{an}的a316,且a1a2a10265,求{an}的通項(xiàng)公式.14。各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,若a4a710,則lga1lga2lga10;15.{an}為等比數(shù)列,(1)q2,S9977,求a3a6a99(2)前n項(xiàng)的和為Sn48,前2n項(xiàng)之和S2n60,求S3n12二。等比數(shù)列的前n項(xiàng)和。a1(1qn)a1anq1)Sna1a2Lan1q(q1qna1(q1)1.等比數(shù)列{an}中,a6a4216,a3a18,Sn40,求q和n。2.等比數(shù)列{an}中,a34,S312,求a1和q。3.等比數(shù)列{an}中,Sn49,S2n112,則S3n=。4.等比數(shù)列{an}中,a11,an512,Sn341,求q。5.求數(shù)列1,3,9,27,L,3n1,L的前n項(xiàng)和。6.求1,a21,(a21)2,L,(a21)n1,L的前n項(xiàng)和242n7.求2,22,L,2n,L,求前2k項(xiàng)的和。yyy8.求1,a,a2,L,an1,L的前n項(xiàng)和。139.等比數(shù)列{an},前n項(xiàng)和為48,前2n項(xiàng)和為60,前3n項(xiàng)的和為()A:183B:108C:75D:6310.{an}成等差數(shù)列,a1,a5,a13成等比數(shù)列,則該等比數(shù)列的公比為()A:1B:2C:1D:124311.{an}成等差數(shù)列,{bn}成等比數(shù)列,q1,bi0(i1,2,,n),若a1b1,a11b11,則()A:a6b6B:a6b6C:a6b6D:a6b6或a6b612.x,a1,a2,y成等差數(shù)列,x,b1,b2,y成等比數(shù)列,則(a1a2)2的取值范圍是b1b2()A:[4,)B:(0,4)C:(,0][4,)D:(,0)[4,)13.一個(gè)項(xiàng)數(shù)是偶數(shù)的等比數(shù)列,它的偶數(shù)項(xiàng)的和是奇數(shù)項(xiàng)和的2倍,又它的首項(xiàng)為1,且中間兩項(xiàng)的和為24,則此等比數(shù)列的項(xiàng)數(shù)為()A.12B.10C.8D.6第四節(jié)數(shù)列的綜合應(yīng)用一、數(shù)列乞降14(一).公式法1.求1,4,7,10,?,(3n-2),?的前n和。2.求數(shù)列22,24,L,22n,L,求前2k的和.yy2yn3.求S1aa2Lan(二).分乞降1.乞降(1+2)+(3+4)+?+(2n-1+2n)2.(x-2)+(x2-2)+?+(xn-2)3.(a1)(a22)L(ann)154.乞降(x121n1y)(xy2)L(xyn)5.122334Ln(n1)6.1325Ln(2n1)(三).裂項(xiàng)乞降1.乞降Sn1111223Ln(n1)2.11L(2n113351)(2n1)3..數(shù)列{an}成等比數(shù)列,各項(xiàng)都為正數(shù),且q≠1,求證11L1n1lga1lga2lgan1lganlga1lganlga2lga34.1111)2334n(n5.11(2n135571)(2n3)6.11(3n114472)(3n1)167.1141512)1323n(n8.111613)14253n(n9.求1111212312n1(四).位相減、其余1.135L2n1222232n2.12222323n2n3.352n12222n4.乞降x3x25x3L(2n1)xn5.1+2×3+3×7+?+n(2n-1)176.已知數(shù)列{an+1}是等比數(shù)列,a11,q2,求a12a23a3nan放及其余1.12223242L992100222+132+142+12.?dāng)?shù)列,,,??的前10和()。22-132-142-1(A)17(B)1111(C)1143(D)118955121321321113.乞降Sn223L11nn1114.求S11532n12n135.求f(x)4x2,求f(1)f(2)f(1998):4x19991999199911L126.求:132n2227.1n(n1)1223Ln(n1)(n1)222181118.2(n11)132n2n二、用已知數(shù)列的前n項(xiàng)和求數(shù)列的通項(xiàng)公式(前文已有)三、用遞推公式求通項(xiàng)1.已知數(shù)列{an},知足,a1=2,an+1=an+2,求{an}的通項(xiàng)公式。2。已知數(shù)列{an},知足,a1=2,an+1=an+2n,求{an}的通項(xiàng)公式。3。已知數(shù)列{an},知足,a1=2,an+1=an+2n,求{an}的通項(xiàng)公式。.已知數(shù)列n,知足,1n+1n+1,求{an的通項(xiàng)公式。4{a}a=2,a=an(n}1)點(diǎn)擊:凡是擁有an+1=an+f(n)形式都可運(yùn)用此法,此中f(n)表示可乞降的數(shù)列。5.已知數(shù)列{an},知足,a1=2,an=3an-1,(n≥2)求{an}的通項(xiàng)公式。6.已知數(shù)列{an},知足,a1=1,an1nan求{an}的通項(xiàng)公式。n1.已知數(shù)列n}知足,a1,2n1anan1(nN,n2),求{an的通項(xiàng)公式。7{a}19規(guī)律:。8.已知數(shù)列{an},知足,a1=2,an+1=2an+1,求{an}的通項(xiàng)公式。9.已知數(shù)列{an},知足,a1=1,an+1=3an+1,求{an}的通項(xiàng)公式。點(diǎn)擊:an1kanb型通項(xiàng)公式可用此法。10*.a(chǎn)15,an12ann5,求{an}的通項(xiàng)公式。11*.已知數(shù)列{an}a11,an12an2n,求{an}的通項(xiàng)公式。*已知數(shù)列n}a11,an13an2n,求{an}的通項(xiàng)公式。12.{a13*.a15,an12ann5,求{an}的通項(xiàng)公式。點(diǎn)擊:a15,an1kanf(n)型通項(xiàng)公式可用此法。遞推公式的變形1.已知數(shù)列{an},知足,a1=1,an12an1anan0,求{an}的通項(xiàng)公式。2.已知數(shù)列n},知足,1an15an求{an}的通項(xiàng)公式。2{aa=1,5an203.項(xiàng)為1的正項(xiàng)數(shù)列,(n1)an21nan2an1an0,求數(shù)列的通項(xiàng)公式。四.Sn與an的互相轉(zhuǎn)變1.已知數(shù)列{an}知足,a11,an2SnSn1,(n2),(1)問數(shù)列{1}能否為等2Sn差數(shù)列。(2)求Sn和an.2.已知數(shù)列{an}知足,Sn2ann,求數(shù)列{an}的通項(xiàng)公式。3.已知數(shù)列{an},知足log2(1Sn)n1,求通項(xiàng)an.4.已知數(shù)列{an}知足,S14,當(dāng)n2時(shí),an1(SnSn1),求Sn和an.25.正數(shù)數(shù)列{an},2Snan1,求數(shù)列{an}的通項(xiàng)公式。216.(05,山東)已知數(shù)列{an},a15,前n項(xiàng)和為Sn,且Sn12Snn5(nN*),(1)求數(shù)列{an}的通項(xiàng)公式。(2)求a12a23a3nan幾個(gè)必然嫻熟掌握的綜合題目1.已知數(shù)列{an}是等差數(shù)列,前n項(xiàng)和為Sn且a1a2a33;a7a98求數(shù)列{an}的通項(xiàng)公式.(2)設(shè)數(shù)列{bn}知足,bn1,求數(shù)列{bn}的前n和SnTn.2.(05濟(jì)南2模)已知數(shù)列{an}的前n項(xiàng)和Sn是n的二次函數(shù),且a12,a22,a36an.求Sn和na.3.已知數(shù)列{an}知足,a12a23a3nann(n1)(n2),求數(shù)列{an}的通項(xiàng)公式。224.數(shù)列數(shù)列{an},知足a11,當(dāng)n2時(shí),a1a2a3ann2,求數(shù)列{an}的通項(xiàng)公式。5.設(shè)函數(shù)f(x)x,數(shù)列{an}中,a11,n2時(shí),前n項(xiàng)和Sn知足Snf(Sn1)2x1(1)求數(shù)列{an}的通項(xiàng)公式;()設(shè)bSn,求{bn的前n項(xiàng)和T。2n16.已知點(diǎn)列Pn(an,bn)(nN)在直線L:y2x1上,且P1為L與y軸的交點(diǎn),數(shù)列an是公

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論