版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列方程中,滿足兩個實數(shù)根的和等于3的方程是()A.2x2+6x﹣5=0 B.2x2﹣3x﹣5=0 C.2x2﹣6x+5=0 D.2x2﹣6x﹣5=02.如圖,過反比例函數(shù)的圖像上一點A作AB⊥軸于點B,連接AO,若S△AOB=2,則的值為()A.2 B.3 C.4 D.53.如圖,點I是△ABC的內心,∠BIC=130°,則∠BAC=()A.60° B.65° C.70° D.80°4.已知正六邊形的邊心距是,則正六邊形的邊長是()A. B. C. D.5.共享單車為市民出行帶來了方便,某單車公司第一季度投放1萬輛單車,計劃第三季度投放單車的數(shù)量比第一季度多4400輛,設該公司第二、三季度投放單車數(shù)量的平均增長率均為,則所列方程正確的是()A. B.C. D.6.如圖,在中,,,垂足為點,如果,,那么的長是()A.4 B.6 C. D.7.某種植基地2016年蔬菜產(chǎn)量為80噸,預計2018年蔬菜產(chǎn)量達到100噸,求蔬菜產(chǎn)量的年平均增長率,設蔬菜產(chǎn)量的年平均增長率為x,則可列方程為()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1008.下列命題正確的個數(shù)有()①兩邊成比例且有一角對應相等的兩個三角形相似;②對角線相等的四邊形是矩形;③任意四邊形的中點四邊形是平行四邊形;④兩個相似多邊形的面積比為2:3,則周長比為4:1.A.1個 B.2個 C.3個 D.4個9.用配方法解方程時,方程可變形為()A. B. C. D.10.圖①是由五個完全相同的小正方體組成的立體圖形.將圖①中的一個小正方體改變位置后如圖②,則三視圖發(fā)生改變的是()A.主視圖 B.俯視圖C.左視圖 D.主視圖、俯視圖和左視圖都改變二、填空題(每小題3分,共24分)11.在雙曲線的每個分支上,函數(shù)值y隨自變量x的增大而增大,則實數(shù)m的取值范圍是________.12.圓弧形蔬菜大棚的剖面如圖,已知AB=16m,半徑OA=10m,OC⊥AB,則中柱CD的高度為_________m.13.如圖,在?ABCD中,AD=7,AB=2,∠B=60°.E是邊BC上任意一點,沿AE剪開,將△ABE沿BC方向平移到△DCF的位置,得到四邊形AEFD,則四邊形AEFD周長的最小值為_____.14.某游樂園的摩天輪(如圖1)有均勻分布在圓形轉輪邊緣的若干個座艙,人們坐在座艙中可以俯瞰美景,圖2是摩天輪的示意圖.摩天輪以固定的速度繞中心順時針方向轉動,轉一圈為分鐘.從小剛由登艙點進入摩天輪開始計時,到第12分鐘時,他乘坐的座艙到達圖2中的點_________處(填,,或),此點距地面的高度為_______m.15.在上午的某一時刻身高1.7米的小剛在地面上的影長為3.4米,同時一棵樹在地面上的影子長12米,則樹的高度為_____米.16.二中崗十字路口南北方向的紅綠燈設置為:紅燈30秒,綠燈60秒,黃燈3秒,小明由南向北經(jīng)過路口遇到紅燈的概率為______.17.用半徑為3cm,圓心角是120°的扇形圍成一個圓錐的側面,則這個圓錐的底面半徑等于_____cm.18.某廠前年繳稅萬元,今年繳稅萬元,如果該廠繳稅的年平均增長率為,那么可列方程為______.三、解答題(共66分)19.(10分)(8分)向陽村2010年的人均收入為12000元,2012年的人均收入為14520元,求人均收入的年平均增長率.20.(6分)某電商在購物平臺上銷售一款小電器,其進價為元件,每銷售一件需繳納平臺推廣費元,該款小電器每天的銷售量(件)與每件的銷售價格(元)滿足函數(shù)關系:.為保證市場穩(wěn)定,供貨商規(guī)定銷售價格不得低于元件且不得高于元件.(1)寫出每天的銷售利潤(元)與銷售價格(元)的函數(shù)關系式;(2)每件小電器的銷售價格定為多少元時,才能使每天獲得的利潤最大,最大是多少元?21.(6分)在平面直角坐標系中,對“隔離直線”給出如下定義:點是圖形上的任意一點,點是圖形上的任意一點,若存在直線:滿足且,則稱直線:是圖形與的“隔離直線”,如圖,直線:是函數(shù)的圖像與正方形的一條“隔離直線”.
(1)在直線①,②,③,④中,是圖函數(shù)的圖像與正方形的“隔離直線”的為.(2)如圖,第一象限的等腰直角三角形的兩腰分別與坐標軸平行,直角頂點的坐標是,⊙O的半徑為,是否存在與⊙O的“隔離直線”?若存在,求出此“隔離直線”的表達式:若不存在,請說明理由;(3)正方形的一邊在軸上,其它三邊都在軸的左側,點是此正方形的中心,若存在直線是函數(shù)的圖像與正方形的“隔離直線”,請直接寫出的取值范圍.22.(8分)如圖,在△ABC中,∠CAB=90°,D是邊BC上一點,,E為線段AD的中點,連結CE并延長交AB于點F.(1)求證:AD⊥BC.(2)若AF:BF=1:3,求證:CD:DB=1:2.23.(8分)已知拋物線的頂點在第一象限,過點作軸于點,是線段上一點(不與點、重合),過點作軸于點,并交拋物線于點.(1)求拋物線頂點的縱坐標隨橫坐標變化的函數(shù)解析式,并直接寫出自變量的取值范圍;(2)若直線交軸的正半軸于點,且,求的面積的取值范圍.24.(8分)投資1萬元圍一個矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長24m,平行于墻的邊的費用為200元/m,垂直于墻的邊的費用為150元/m,設平行于墻的邊長為xm(1)設垂直于墻的一邊長為ym,直接寫出y與x之間的函數(shù)關系式;(2)若菜園面積為384m2,求x的值;(3)求菜園的最大面積.25.(10分)如圖,拋物線y=x2+bx+c過點A(3,0),B(1,0),交y軸于點C,點P是該拋物線上一動點,點P從C點沿拋物線向A點運動(點P不與A重合),過點P作PD∥y軸交直線AC于點D.(1)求拋物線的解析式;(2)求點P在運動的過程中線段PD長度的最大值;(3)△APD能否構成直角三角形?若能,請直接寫出所有符合條件的點P坐標;若不能,請說明理由.26.(10分)如圖,在以線段AB為直徑的⊙O上取一點,連接AC、BC,將△ABC沿AB翻折后得到△ABD
(1)試說明點D在⊙O上;(2)在線段AD的延長線上取一點E,使AB2=AC·AE,求證:BE為⊙O的切線;(3)在(2)的條件下,分別延長線段AE、CB相交于點F,若BC=2,AC=4,求線段EF的長.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】利用根與系數(shù)的關系判斷即可.【詳解】滿足兩個實數(shù)根的和等于3的方程是2x2-6x-5=0,故選D.【點睛】此題考查了根與系數(shù)的關系,熟練掌握根與系數(shù)的關系是解本題的關鍵.2、C【解析】試題分析:觀察圖象可得,k>0,已知S△AOB=2,根據(jù)反比例函數(shù)k的幾何意義可得k=4,故答案選C.考點:反比例函數(shù)k的幾何意義.3、D【分析】根據(jù)三角形的內接圓得到∠ABC=2∠IBC,∠ACB=2∠ICB,根據(jù)三角形的內角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度數(shù)即可;【詳解】解:∵點I是△ABC的內心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故選D.【點睛】本題主要考查了三角形的內心,掌握三角形的內心的性質是解題的關鍵.4、A【分析】如圖所示:正六邊形ABCDEF中,OM為邊心距,OM=,連接OA、OB,然后求出正六邊形的中心角,證出△OAB為等邊三角形,然后利用等邊三角形的性質和銳角三角函數(shù)即可求出結論.【詳解】解:如圖所示:正六邊形ABCDEF中,OM為邊心距,OM=,連接OA、OB正六邊形的中心角∠AOB=360°÷6=60°∴△OAB為等邊三角形∴∠AOM=∠AOB=30°,OA=AB在Rt△OAM中,OA=即正六邊形的邊長是.故選A.【點睛】此題考查的是根據(jù)正六邊形的邊心距求邊長,掌握中心角的定義、等邊三角形的判定及性質和銳角三角函數(shù)是解決此題的關鍵.5、B【解析】直接根據(jù)題意得出第三季度投放單車的數(shù)量為:(1+x)2=1+0.1,進而得出答案.【詳解】解:設該公司第二、三季度投放單車數(shù)量的平均增長率為x,根據(jù)題意可得:(1+x)2=1.1.故選:B.【點睛】此題主要考查了根據(jù)實際問題抽象出一元二次方程,求平均變化率的方法為:若設變化前的量為a,變化后的量為b,平均變化率為x,則經(jīng)過兩次變化后的數(shù)量關系為a(1±x)2=b.6、C【分析】證明△ADC∽△CDB,根據(jù)相似三角形的性質求出CD、BD,根據(jù)勾股定理求出BC.【詳解】∵∠ACB=90°,
∴∠ACD+∠BCD=90°,
∵CD⊥AB,
∴∠A+∠ACD=90°,
∴∠A=∠BCD,又∠ADC=∠CDB,
∴△ADC∽△CDB,
∴,,
∴,即,
解得,CD=6,
∴,
解得,BD=4,
∴BC=,
故選:C.【點睛】此題考查相似三角形的判定和性質,掌握相似三角形的判定定理和性質定理是解題的關鍵.7、A【解析】利用增長后的量=增長前的量×(1+增長率),設平均每次增長的百分率為x,根據(jù)“從80噸增加到100噸”,即可得出方程.【詳解】由題意知,蔬菜產(chǎn)量的年平均增長率為x,根據(jù)2016年蔬菜產(chǎn)量為80噸,則2017年蔬菜產(chǎn)量為80(1+x)噸,2018年蔬菜產(chǎn)量為80(1+x)(1+x)噸,預計2018年蔬菜產(chǎn)量達到100噸,即:80(1+x)2=100,故選A.【點睛】本題考查了一元二次方程的應用(增長率問題).解題的關鍵在于理清題目的含義,找到2017年和2018年的產(chǎn)量的代數(shù)式,根據(jù)條件找準等量關系式,列出方程.8、A【分析】利用相似三角形的判定、矩形的判定方法、平行四邊形的判定方法及相似多邊形的性質分別判斷后即可確定正確的選項.【詳解】①兩邊成比例且夾角對應相等的兩個三角形相似,故錯誤;
②對角線相等的平行四邊形是矩形,故錯誤;
③任意四邊形的中點四邊形是平行四邊形,正確;
④兩個相似多邊形的面積比2:3,則周長比為:,故錯誤,
正確的有1個,
故選A.【點睛】本題考查命題與定理,解題的關鍵是掌握相似三角形的判定、矩形的判定方法、平行四邊形的判定方法及相似多邊形的性質.9、D【詳解】解:∵2x2+3=7x,∴2x2-7x=-3,∴x2-x=-,∴x2-x+=-+,∴(x-)2=.故選D.【點睛】本題考查解一元二次方程-配方法,掌握配方法的步驟進行計算是解題關鍵.10、A【分析】根據(jù)從正面看得到的視圖是主視圖,從左邊看得到的圖形是左視圖,從上邊看得到的圖形是俯視圖對兩個組合體進行判斷,可得答案.【詳解】解:①的主視圖是第一層三個小正方形,第二層中間一個小正方形;左視圖是第一層兩個小正方形,第二層左邊一個小正方形;俯視圖是第一層中間一個小正方形,第二層三個小正方形;②的主視圖是第一層三個小正方形,第二層左邊一個小正方形;左視圖是第一層兩個小正方形,第二層左邊一個小正方形;俯視圖是第一層中間一個小正方形,第二層三個小正方形;所以將圖①中的一個小正方體改變位置后,俯視圖和左視圖均沒有發(fā)生改變,只有主視圖發(fā)生改變,故選:A.【點睛】本題考查了三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖.二、填空題(每小題3分,共24分)11、m<﹣1【分析】根據(jù)在雙曲線的每個分支上,函數(shù)值y隨自變量x的增大而增大,可以得到m+1<0,從而可以求得m的取值范圍.【詳解】∵在雙曲線的每個分支上,函數(shù)值y隨自變量x的增大而增大,∴m+1<0,解得,m<﹣1,故答案為m<﹣1.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征、反比例函數(shù)的性質,解題的關鍵是明確題意,利用反比例函數(shù)的性質解答.12、4【分析】根據(jù)垂徑定理可得AD=AB,然后由勾股定理可得OD的長,繼而可得CD的高求解.【詳解】解:∵CD垂直平分AB,∴AD=1.∴OD==6m,∴CD=OC?OD=10?6=4(m).故答案是:4【點睛】本題考查垂徑定理和勾股定理的實際應用,掌握這些知識點是解題關鍵.13、20【解析】當AE⊥BC時,四邊形AEFD的周長最小,利用直角三角形的性質解答即可.【詳解】當AE⊥BC時,四邊形AEFD的周長最小,∵AE⊥BC,AB=2,∠B=60°,∴AE=3,BE=,∵△ABE沿BC方向平移到△DCF的位置,∴EF=BC=AD=7,∴四邊形AEFD周長的最小值為:14+6=20,故答案為:20.【點睛】本題考查平移的性質,解題的關鍵是確定出當AE⊥BC時,四邊形AEFD的周長最小.14、C78【分析】根據(jù)轉一圈需要18分鐘,到第12分鐘時轉了圈,即可確定出座艙到達了哪個位置;再利用垂徑定理和特殊角的銳角三角函數(shù)求點離地面的高度即可.【詳解】∵轉一圈需要18分鐘,到第12分鐘時轉了圈∴乘坐的座艙到達圖2中的點C處如圖,連接BC,OC,OB,作OQ⊥BC于點E由圖2可知圓的半徑為44m,即∵OQ⊥BC∴∴∴∴點C距地面的高度為m故答案為C,78【點睛】本題主要考查解直角三角形,掌握垂徑定理及特殊角的銳角三角函數(shù)是解題的關鍵.15、1【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經(jīng)過物體頂部的太陽光線三者構成的兩個直角三角形相似.利用相似比和投影知識解題,【詳解】∵,∴,即∴樹高為1m故答案為:1.【點睛】利用相似比和投影知識解題,在某一時刻,實際高度和影長之比是一定的,此題就用到了這一知識點.16、【解析】∵該路口紅燈30秒,綠燈60秒,黃燈3秒,∴爸爸隨機地由南往北開車經(jīng)過該路口時遇到紅燈的概率是,故答案為:.17、1.【分析】把扇形的弧長和圓錐底面周長作為相等關系,列方程求解.【詳解】設此圓錐的底面半徑為r.根據(jù)圓錐的側面展開圖扇形的弧長等于圓錐底面周長可得:2πr,解得:r=1.故答案為1.【點睛】本題考查了圓錐側面展開扇形與底面圓之間的關系,圓錐的側面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長.18、【分析】由題意設該廠繳稅的年平均增長率為x,根據(jù)該廠前年及今年的納稅額,即可得出關于x的一元二次方程.【詳解】解:如果該廠繳稅的年平均增長率為,那么可以用表示今年的繳稅數(shù),今年的繳稅數(shù)為,然后根據(jù)題意列出方程.故答案為:.【點睛】本題考查一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.三、解答題(共66分)19、10%.【解析】試題分析:設這兩年的平均增長率為x,根據(jù)等量關系“2010年的人均收入×(1+平均增長率)2=2012年人均收入”列方程即可.試題解析:設這兩年的平均增長率為x,由題意得:12000(1+x)2=14520,解得:x答:這兩年的平均增長率為10%.考點:1.一元二次方程的應用;2.增長率問題.20、(1);(2)當時,w有最大值,最大值為750元【分析】(1)直接利用“總利潤=每件的利潤×銷量”得出函數(shù)關系式;
(2)由(1)中的函數(shù)解析式,將其配方成頂點式,結合x的取值范圍,利用二次函數(shù)的性質解答即可.【詳解】(1)依題意得:(2)∵∴當,w隨x的增大而減小∴當時,w有最大值,最大值為:元.【點睛】本題主要考查了二次函數(shù)的應用,解題的關鍵是理解題意,找到題目蘊含的相等關系,并據(jù)此列出函數(shù)關系式及熟練掌握二次函數(shù)的性質.21、(1)①④;(2);(3)或【分析】(1)根據(jù)的“隔離直線”的定義即可解決問題;(2)存在,連接,求得與垂直且過的直接就是“隔離直線”,據(jù)此即可求解;(3)分兩種情形正方形在x軸上方以及在x軸下方時,分別求出正方形的一個頂點在直線上時的t的值即可解決問題.【詳解】(1)根據(jù)的“隔離直線”的定義可知,是圖1函數(shù)的圖象與正方形OABC的“隔離直線”;直線也是圖1函數(shù)的圖象與正方形OABC的“隔離直線”;而與不滿足圖1函數(shù)的圖象與正方形OABC的“隔離直線”的條件;
故答案為:①④;(2)存在,理由如下:連接,過點作軸于點,如圖,在Rt△DGO中,,∵⊙O的半徑為,
∴點D在⊙O上.
過點D作DH⊥OD交y軸于點H,
∴直線DH是⊙O的切線,也是△EDF與⊙O的“隔離直線”.設直線OD的解析式為,將點D(2,1)的坐標代入得,解得:,∵DH⊥OD,∴設直線DH的解析式為,將點D(2,1)的坐標代入得,解得:,∴直線DH的解析式為,∴“隔離直線”的表達式為;(3)如圖:由題意點F的坐標為(),當直線經(jīng)過點F時,,
∴,
∴直線,即圖中直線EF,
∵正方形A1B1C1D1的中心M(1,t),
過點作⊥y軸于點G,∵點是正方形的中心,且,∴B1C1,,∴正方形A1B1C1D1的邊長為2,
當時,,∴點C1的坐標是(),此時直線EF是函數(shù))的圖象與正方形A1B1C1D1的“隔離直線”,∴點的坐標是(-1,2),此時;
當直線與只有一個交點時,,消去y得到,由,可得,
解得:,同理,此時點M的坐標為:(),∴,
根據(jù)圖象可知:當或時,直線是函數(shù))的圖象與正方形A1B1C1D1的“隔離直線”.【點睛】本題是二次函數(shù)綜合題,考查了二次函數(shù)的性質、正方形的性質、一次函數(shù)的應用、二元二次方程組.一元二次方程的根的判別式等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,學會用分類討論的思想思考問題.22、(1)見解析;(2)見解析.【分析】(1)由等積式轉化為比例式,再由相似三角形的判定定理,證明△ABD∽CBA,從而得出∠ADB=∠CAB=90°;(2)過點D作DG∥AB交CF于點G,由E為AD的中點,可得△DGE≌△AFE,得出AF=DG,再由平行線分線段成比例可得出結果.【詳解】證明:(1)∵AB2=BD·BC,∴又∠B=∠B,∴△ABD∽CBA,∴∠ADB=∠CAB=90°,∴AD⊥BC.(2)過點D作DG∥AB交CF于點G,∵E為AD的中點,∴易得△DGE≌△AFE,∴AF=DG,又AF:BF=1:3,∴DG:BF=1:3.∵DG∥BF,∴DG:BF=CD:BC=1:3,∴CD:DB=1:2.【點睛】本題考查相似三角形的判定與性質,遇到比例式或等積式就要考慮轉化為三角形相似來解決問題.23、(1)函數(shù)解析式為y=x+4(x>0);(2)0≤S≤.【分析】(1)拋物線解析式為y=-x2+2mx-m2+m+4,設頂點的坐標為(x,y),利用拋物線頂點坐標公式得到x=m,y=m-4,然后消去m得到y(tǒng)與x的關系式即可.(2)如圖,根據(jù)已知得出OE=4-2m,E(0,2m-4),設直線AE的解析式為y=kx+2m-4,代入A的坐標根據(jù)待定系數(shù)法求得解析式,然后聯(lián)立方程求得交點P的坐標,根據(jù)三角形面積公式表示出S=(4-2m)(m-2)=-m2+3m-2=-(m-)2+,即可得出S的取值范圍.【詳解】(1)由拋物線y=-x2+2mx-m2+m+4可知,a=-1,b=2m,c=-m2+m+4,設頂點的坐標為(x,y),∴x=-=m,∵b=2m,y==m+4=x+4,即頂點的縱坐標隨橫坐標變化的函數(shù)解析式為y=x+4(x>0);(2)如圖,由拋物線y=-x2+2mx-m2+m+4可知頂點A(m,m+4),∵軸∴軸∴△ACP∽△ABE,∴∵∴,∵AB=m,∴BE=2m,∵OB=4+m,∴OE=4+m-2m=4-m,∴E(0,4-m),設直線AE的解析式為y=kx+4-m,代入A的坐標得,m+4=km+4-m,解得k=2,∴直線AE的解析式為y=2x+4-m,解得
,,∴P(m-2,m),∴S=(4-m)(m-2)=-m2+3m-2=-(m-3)2+,∴S有最大值
,∴△OEP的面積S的取值范圍:0≤S≤.【點睛】本題考查了二次函數(shù)的應用,解題的關鍵是正確的用字母表示出點的坐標,并利用題目的已知條件得到有關的方程或不等式,從而求得未知數(shù)的值或取值范圍.24、(1)見詳解;(2)x=18;(3)416m2.【解析】(1)根據(jù)“垂直于墻的長度=可得函數(shù)解析式;(2)根據(jù)矩形的面積公式列方程求解可得;(3)根據(jù)矩形的面積公式列出總面積關于x的函數(shù)解析式,配方成頂點式后利用二次函數(shù)的性質求解可得.【詳解】(1)根據(jù)題意知,y==-x+;(2)根據(jù)題意,得(-x+)x=384,解得x=18或x=32.∵墻的長度為24m,∴x=18.(3)設菜園的面積是S,則S=(-x+)x=-x2+x=-(x-25)2+.∵-<0,∴當x<25時,S隨x的增大而增大.∵x≤24,∴當x=24時,S取得最大值,最大值為416.答:菜園的最大面積為416m2.【點睛】本題主要考查二次函數(shù)和一元二次方程的應用,解題的關鍵是將實際問題轉化為一元二次方程和二次函數(shù)的問題.25、(1)y=x2-4x+1;(2)點P在運動的過程中,線段PD長度的最大值為;(1)能,點P的坐標為:(1,0)或(2,-1).【分析】(1)把點A、B的坐標代入拋物線解析式,解方程組得到b、c的值,即可得解;(2)求出點C的坐標,再利用待定系數(shù)法求出直線AC的解析式,再根據(jù)拋物線解析式設出點P的坐標,然后表示出PD的長度,再根據(jù)二次函數(shù)的最值問題解答;(1)分情況討論①∠APD是直角時,點P與點B重合,②求出拋物線頂點坐標,然后判斷出點P為在拋物線頂點時,∠PAD是直角,分別寫出點P的坐標即可;【詳解】(1)把點A(1,0)和點B(1,0)代入拋物線y=x2+bx+c,得:解得∴y=x2-4x+1.(2)把x=0代入y=x2-4x+1,得y=1.∴C(0,1).又∵A(1,0),設直線AC的解析式為:y=kx+m,把點A,C的坐標代入得:∴直線AC的解析式為:y=-x+1.PD=-x+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 強化酒店安全管理
- 蘇州工會課程設計
- 2024年設備監(jiān)理師考試題庫含答案(滿分必刷)
- 餐飲食品銷售顧問
- 鞋類設計師工作經(jīng)驗分享
- 秘書工作中的法律知識計劃
- 教育用品采購心得
- 化工行業(yè)安全管理經(jīng)驗分享
- 廣州市工商行政管理局網(wǎng)站政務服務操作指南
- 餐飲行業(yè)個人發(fā)展計劃
- 2024年江蘇省學業(yè)水平合格性考試全真模擬語文試題(解析版)
- 第六章 綠色化學與科技課件
- 封窗安全事故免責協(xié)議書范文
- 北京市海淀區(qū)2023-2024學年高二上學期期末考試 生物 含解析
- 小學數(shù)學《比的認識單元復習課》教學設計(課例)
- 小學三年級下冊數(shù)學(青島54制)全冊知識點總結
- 汽車修理業(yè)務受理程序、服務承諾、用戶抱怨制度
- 河綜合治理工程竣工環(huán)保驗收監(jiān)測調查報告
- 2024年院感多重耐藥菌醫(yī)院感染預防與控制技術指南專項測試題有答案
- 2023-2024學年山東省泰安市高一下學期7月期末考試物理試題(解析版)
- 安徽省合肥市2023-2024學年七年級上學期期末數(shù)學試題(含答案)
評論
0/150
提交評論