版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
英文原文Hydraulicactuationsystemdesignandcomputation1.clearingaboutthedesignrequesttocarryontheoperatingmodeanalysis.Whendesignhydraulicsystembelow,firstshouldbeclearaboutthequestion,andtakesitasthedesignbasis.Mainengineuse,technologicalprocess,overalllayoutaswellastohydraulicgearpositionandspatialsizerequest;Themainenginetothehydraulicsystemperformancerequirement,liketheautomaticity,thevelocitymodulationscope,themovementstability,thecommutationpointingaccuracyaswellastherequestwhichtothesystemefficiency,warmpromotes;Hydraulicsystemworkingconditions,liketemperature,humidity,vibrationimpactaswellaswhetherhassituationandsooncorrosivenessandheat-sensitivematerialexistence.Inintheaboveworkfoundation,shouldcarryontheoperatingmodeanalysistothemainengine,theoperatingmodeanalysisincludingthemovementanalysisandthemechanicalanalysis,alsomustestablishtheloadandtheoperatingcyclecharttothecomplexsystem,fromthisunderstoodthehydrauliccylinderortheoilmotorloadandthespeedchangeasnecessarytherule,belowmakestheconcreteintroductiontotheoperatingmodeanalysiscontentmovementsanalysesThemainenginefunctionalelementaccordingtothetechnologicalrequirementmovementsituation,mayusethedisplacementcirculationchart(L—t),thespeedcirculationchart(v—t),orthespeedandthedisplacementcirculationchartindicated,fromthiscarriesontheanalysistothemovementrule.displacementscirculationattemptsL—tThechart1.1isthehydraulicpresshydrauliccylindermovesthecirculationchart,they-coordinateLexpressionpistonmoves,thex-coordinatetexpressionstartsfromthepistontotherepositiontime,therateofcurveexpressionmovementofplungerspeed.、speedscirculationchartv—t(orv—L)Intheprojectthehydrauliccylindermovementcharacteristicmayinduceisthreekindoftypes.Thechartisthreekindoftypeshydrauliccylindersv—tchart,thefirstkindoflikechart1.2centersolidlinesshow,thehydrauliccylinderstartstomaketheuniformacceleratedmotion,thenuniformmotion,
Chart1.2speedscirculationchartFinallyuniformretardedmotiontoendpoint;Thesecondkind,thehydrauliccylinderprecedingpartlymakestheuniformacceleratedmotionintheoveralltravellingschedule,inanotheronepartlymakestheuniformretardedmotion,alsotheaccelerationvalueisequal;Thethirdkind,thehydrauliccylinderonemostabovemakestheuniformacceleratedmotionintheoveralltravellingschedulebyasmalleracceleration,thenuniformdeceleratestothetravellingscheduleendpoint.V—tchartthreevelocitycurve,notonlyclearlyhasindicatedthreekindoftypeshydrauliccylindersmovementrule,alsoindirectlyhasindicatedthreekindofoperatingmodesdynamicperformance.mechanicalanalyseshydrauliccylindersloadsanddutycyclecharthydrauliccylindersloadstrengthcomputations(1.1)Whentheoperatingmechanismmakesthestraightreciprocatingmotion,thehydrauliccylindermustovercometheloadiscomposedbysixparts(1.1)F=F+F+F+F+F+FcfigmbIntheformula:FcInordertoresistancetocutting;FfInordertofrictiondrag;FiForinertiaresistance;FgForgravity;FmInordertosealtheresistance;FbInordertodraintheoiltheresistance.hydrauliccylinderscycleofmotionvariousstagesoverallloadstrengthThehydrauliccylindercycleofmotionvariousstagesoverallloadstrengthcomputation,generallyincludesthestartacceleration,quicklyenters,thelaborenters,quicklydrawsback,deceleratesappliesthebrakeandsoonseveralstages,eachstageoverallloadstrengthhasthedifference.(1)startstheaccelerationperiod:Bynowthehydrauliccylinderorthepistonwereinfromstaticenoughtostartsandacceleratestothecertainspeed,itsoverallloadstrengthincludingguiderailfrictionforce,packingassemblyfrictionforce(accordingtocylindermechanicalefficiencyqm=0.9computation),gravityandsoonitem,namely:F二F二七+F+F+F+Fb(1.2)faststage:(1.3)thelaborentersthestage:F=F+^+F+F+F (1.4)decelerates:F=氣+F+F+F+Fb (1.5)Tothesimplehydraulicsystem,theabovecomputationprocessmaysimplify.Forexampleusesthesingleproportioningpumptosupplytheoil,onlymustcalculatethelabortoenterthestagetheoverallloadstrength,ifthesimplesystemusesthelimitingpressuretypevariabledisplacementpumporapairofassociationpumpsfortheoil,thenonlymustcalculatethefaststageandthelaborentersthestagetheoverallloadstrength.
oilmotorsloadWhentheoperatingmechanismmakestherotarymotion,theoilmotormustovercometheoutsideloadis:M=M+Mf+M (1.6)operatingdutiesmomentofforceMe.Theoperatingdutymomentofforceispossiblyadefinitevalue,alsopossiblyasnecessarychanges,shouldcarryontheconcreteanalysisaccordingtothemachineworkingcondition.frictionmoments.Inordertorevolvethepartjournalplacefrictionmoment,itsformulais:Mf=GFR(N-M) (1.7)Intheformula:Gisrevolvesthepartweight(N);Fistherubbingfactor,whenthestartforthefactor,afterthestartformovestherubbingfactor;Risthejournalradius(m).momentofinertiaMi.Themomentofinertiawhichinordertorevolvethepartaccelerationordecelerateswhenproduces,itsformulais:(1.8)Intheformula:sIstheangleacceleration(r/sIntheformula:sIstheangleacceleration(r/s2);Atistheaccelerationordeceleratesthetime(s);Jis1GD2:4Grevolvesthepartrotationinertia(Kg-m2),1GD2:4GIntheformula:GD2Inordertorotatetheparttheflywheeleffect(N-M2).Eachkindmaylookup<MachinedesignHandbook>Accordingtothetype(1.6),separatelyfiguresouttheoilmotorinaoperatingcyclevariousstagesloadsize,thenmaydrawuptheoilmotorthedutycyclechartdeterminationshydraulicsystemmainparameterhydrauliccylindersdesigncalculationsinitiallydecidesthehydrauliccylinderworkingpressureInthehydrauliccylinderworkingpressuremainbasiscycleofmotionvariousstagesbiggestoverallloadstrengthdetermined,inadditionbelow,butalsoneedstoconsiderthefactor:eachkindofequipmentdifferentcharacteristicandusesituation.considerationseconomiesandtheweightfactor,thepressureelectslowly,thenpartsizebig,theweightisheavy;Thepressurechooseshighsomewhat,thenpartsizesmall,theweightislight,buttothepartmanufactureprecision,thesealingpropertyrequestshigh.Therefore,thehydrauliccylinderworkingpressurechoicehastwoways:One,electsaccordingtothemechanicaltype;Two,accordingtocutstheloadtoelect.Ifthetable2.1,thetable2.2shows.Thetable2.1pressestheloadtochoosetheexecutionfiletheworkingpressureLoad/N<5000500?1000010000?2000020000?3000030000?50000>50000Workingpressure/MPa<0.8-11.5?22.5?33?44?5>5Thetable2.2pressesthemechanicaltypetochoosetheexecutionfiletheworkingpressureMechanicaltypeEnginebedFarmmachineryProjectmachineryGrinderAggregatemachine-toolDragonGatedigsthebedBroachingmachineWorkingpressure/MPaa<23?5<88?1010?1620?32oilmotorsdesigncalculationcomputationsoilmotordisplacementUnderoilmotordisplacementaccordingtothetypedecidedthat,V=6.28T/AP門.(m3/r) (2.1)AP「Intheformula:Tistheoilmotorloadmomentofforce(N,m); Foroilmotorimportandexportpressuredifference(n/m3);istheoilmotormechanicalefficiency,thecommongearandtheplungermotortakes0.9?0.95,theleafblademotortakes0.8?0.9.computationsoilmotorneedsthecurrentcapacityoilmotorthemaximumcurrentcapacityq=Vn (m3/s) (2.2)Intheformula:Vistheoilmotordisplacement(m3/r);nistheoilmotorhighestrotationalspeed(r/s).hydraulicpressurepartschoicehydraulicpumpsdeterminationswithneedthepowerthecomputationdeterminesthehydraulicpumpthebiggestworkingpressure.Thehydraulicpressurepumpingstationmusttheworkingpressuredetermination,mainlyactsaccordingtothehydrauliccylinderintheoperatingcyclevariousstagestohavemosttremendouspressurep1,inadditiontheoilpumplosesSigmaDeltaptheoilmouthtothecylinderplacealwayspressureSA,pnamelyPb=p+ZAP (3.1)
YaD1△△Ploses,thepipelineincludingtheoilaftertheflowvalveandotherpartslocalpressuresalongtheregulationlossandsoon,beforesystempipelinedesign,mayactaccordingtothesimilarsystemexperiencetoestimate,commonpipelinesimplethrottlevalvevelocitymodulationsystemZAis(2~5)x105Pa,withthevelocitymodulationvalveandpipelinecomplexsystemZapis(5velocitymodulationvalveandpipelinecomplexsystemZapis(5?15)x105Pa,Zapalsomayonlyconsiderflowsaftervariouscontrolvalvespressureloss,butignoresthecircuitryalongtheregulationloss,variousvalvesratedpressurelosesmaysearchesfromthehydraulicpressureparthandbookortheproductsample,Alsomayrefertothetable1.3selectionsThetable3.1iscommonlyused,thelowpressureeachkindofvalvepressureloses(Ip)ValveApn(x105Pa)ValveApn(x105Pa)ValveApn(x105Pa)ValveApn(x105Pa)Cone-wayvalve0.3?0.5Cone-wayvalve3?8Cone-wayvalve1.5?2Cone-wayvalve1.5?2Crossvalve1.5?3Crossvalve2?3Crossvalve1.5?3Crossvalve3?5determinesthehydraulicpumpcurrentcapacityqBPumpsthecurrentcapacityqbasisfunctionalelementoperatingcyclemustthemaximumcurrentcapacityqandthesystemdivulgesthedeterminationAtthesametimewhenmorethanhydrauliccylindersmovement,thehydraulicpumpcurrentcapacitymustbebiggerthanthemaximumcurrentcapacitywhichatthesametimethemovementseveralhydrauliccylinders(ormotor)needs,andshouldconsiderthesystemdivulgingwearsthevolumetricefficiencydropafterthehydraulicpump,namelyqB=K(zq) (m3/s) (3.2)Intheformula:Kisthesystemleakagecoefficient,generallytakes1.1?1.3,thegreatcurrentcapacitytakesthesmallvalue,thesmallcurrentcapacitytakesthegreatvalue(Zq) ;Foratthesametimemaxmovementhydrauliccylinder(ormotor)isbiggest(m3/s).choosesthehydraulicpumpthespecificationTable3.2hydraulicpumpsoveralleffectivenessindicesHydraulicpumpGearpumptypeThescrewrodVanepumpRampumppumps
HydraulicpumpGearpumptypeOveralleffectiveness0.6Overalleffectiveness0.6?0.7index0.65?0.800.60?0.750.80?0.85Rotationalspeedandpumpswhichaccordingtotheabovepower,mayselectthestandardelectricmotorfromtheproductsample,againcarrieson,causeswhentheelectricmotorsendsoutthemaximumworkrate,inpermissionscope.valvesclasspartschoicechoicesbasesThechoicebasisis:Ratedpressure,maximumcurrentcapacity,movementway,installmentfixedway,pressurelossvalue,operatingperformanceparameterandworkinglifeandsoon.selectorvalvesclasspartsshouldpayattentionquestionshouldselectthestandardstereotypiaproductasfaraspossible,onlyifdoesnothavealreadytimeonlythenindependentlydesignsspecial-purpvalvesclasspartsspecificationmainbasisclassafterthisvalvefatliquormosttremendouspressureandmaximumcurrentcapacityselection.Whenchoosestheoverflowvalve,shouldaccordingtothehydraulicpumpmaximumcurrentcapacityselection;Whenchoosesthethrottlevalveandthevelocitymodulationvalve,shouldconsideritsminimumstablecurrentcapacitysatisfiesthemachinelow-speedperformancetherequestaccumulatorschoicesaccumulatorsuseintosupplementwhenthehydraulicpumpsuppliestheoilinsufficiency,itsdischargeablecapacityisV=ZALK一qt(m3) (3.3)ii BIntheformula:Aisthehydrauliccylinderactivesurface(m2);Listhehydrauliccylindertravellingschedule(m);Kisthehydrauliccylinderlosscoefficient,whentheestimatemaytakeK=1.2;Suppliestheoilcurrentcapacityforthehydraulicpump(m3/s);Tistheoperatingtime(s).accumulatorsmaketheemergencyenergy,itsdischargeablecapacityis:V=ZAL一qt(m3) (3.4)iiBWhentheaccumulatorusesinabsorbsthepulsationtorelaxthehydraulicpressureimpact,shouldtakeitasinthesystemalinkiftobeconnectedpartiallytogethersynthesizesconsidersitsdischargeablecapaciAccordingtothedischargeablecapacitywhichextractsandconsideredotherrequests,thenchoosestheaccumulatortheformpipelineschoicesdrilltubingstypeschoiceInthehydraulicsystemusesthedrilltubingdividesthehardtubeandthehose,thechoicedrilltubingshouldhaveenoughpassesflowsthesectionandthebearingpressureability,simultaneously,shouldreducethepipelineasfaraspossible,avoidstheextremeturnandthesectionsuddenchange.steelpipes:Centerthehightensionsystemselectstheseamlesssteelpipe,thelowpressuresystemselectstheweldedsteelpipe,thesteelpipepricelowly,performancegood,theuseiswidespreadcopperpipes:Thecoppertubeworkingpressurebelow6.5~10MPa,theinstabletune,isadvantageousfortheassembly;Yellowcopperpipewithstandingpressurehigher,reaches25MPa,wasinferiortothecoppertubeiseasytobecurving.Copperpipepricehigh,earthquakeresistanceabilityweak,iseasytocausethefatliquoroxidation,shouldasfaraspossiblelittleuse,onlyusesinthehydraulicunittomatchmeetsnottheconvenientspot.drilltubingssizesdeterminationdrilltubingsinsidediametersdpressesdownthetypecomputationIntheformula:Qispassesthedrilltubingthemaximumcurrentcapacity(mWs);Vspeedofflowwhichpermitsforthepipelinein(m/s).Thecommonoilsuctionpipetakes0.5~5(m/s);Thepressureoilpipetakes~5(m/s);Theoilreturnpipetakes1.5~2(m/s).drilltubings<5sizesdetermination8 >P?—(Q) (3-5)2Intheformula:Pisinthetubethebiggestworkingpressure;Whennisthesafetycoefficient,steelpipep<7MPa,takesn=8;Whenp<17.5MPa,takesn=6;Whenp>17.5MPa,takesn=4.Accordingtodrilltubinginsidediameterandwallthicknesswhichcalculates,looksupthehandbookselectionstandardspecificationdrilltubingfueltankdesignThefueltankfunctionistheoilstorage,dispersestheoildischargethequantityofheat,intheprecipitationoiltheimpurity,isleisurelyintheoilthegasfueltanksdesignsmainpointfueltanksshouldhavetheenoughvolumetosatisfytheradiation,simultaneouslyitsvolumeshouldguaranteeinthesystemthefatliquorcompletelyflowswhenthefueltankdoesnotseepout,thefatliquorliquidlevelshouldnotsurpassthefueltankhighly80%.suctionboxestubesandtheoilreturnpipespacingshouldbeasfaraspossiblebigfueltanksbasesshouldhavethesuitableascent,releasestheoilmouthtosettothemostlowspot,inordertodrainstheoiloilfilterschoicesChoosestheoilfilterthebasistohavefollowingseveralbearingcapacitiesAccordingtosystempipelineworkingpressuredetermination.filterstheprecision:Accordingtoisprotectedtheparttheprecisionrequestdeterminationflowtheability:Accordingtothroughmaximumcurrentcapacitydetermination.resistancepressuredrops:Shouldthesatisfiedfiltermaterialintensityandthecoefficientrequest.hydraulicsystemsperformanceInordertojudgethehydraulicsystemthedesignquality,needstolosetothesystempressure,togiveoffheat,theefficiencyandsystemdynamiccharacteristicandsooncircuitriespressurelosesAfterhydraulicpressurepartspecificationmodelandpipelinesizedetermination,maythemoreaccuratecomputingsystempressureloss,thepressurelossinclude:Theoilloses,△p^thelocalpressureafterthepipelineApalongtheregulationpressuredamagesflowsafterthevalveclasspartpressurelossAP^,namely:AP=AP^+APC+AP^ (4.1)Systemadjustmentpressure:P0>P+AP (4.2)Intheformula:PQForhydraulicpumpworkingpressureorlegadjustmentpressure;PJnordertoexecutionworkingpressure.IfcalculatesAPintheprimaryelectionsystemworkingpressuretimetheissketchierthandesignationpressuretoloseismuchbiggerthan,shouldremoveentirerelatedpart,auxiliaryspecification,againdefinitepipelinesize.systemsgiveoffheatThesystemgivesoffheatoriginatesfromthesysteminteriorenergyloss,likethehydraulicpumpandthefunctionalelementpowerloss,theoverflowvalveoverflowloses,thehydraulicvalveandthepipelinepressurelossandsoon.ThesystemgivesoffheatthepowerPcomputationP=P(1-n)(W) (4.3)BIntheformula:PBisthehydraulicpumppowerinput(W);nIsthehydraulicpumpoveralleffe(indexIfinaoperatingcyclehasseveralworkingprocedures,thenmayactaccordingtoeachworkingprocedurethecalorificcapacity,extractsthesystemunittimetheaveragecalorificcapacity:1P=—YPb(1-n叫(W) (4.4)i=1 1 1Intheformula:Tistheoperatingcyclecycle(s);qForiworkingprocedureoperatingtime(s);piisinthecirculationtheiworkingprocedurepowerinput(W).systemsefficiencyThehydraulicsystemefficiencyisbythehydraulicpump,thefunctionalelementandthehydraulicpressurereturnrouteefficiencydeterminedThehydraulicpressure^ returnrouteefficiencygenerallymayusethetypetocalculate:(4.5)Pq+P&+..…nc='Pq2+2Pqb1b2 b2b2(4.5)Intheformula:p1,q1;p2,q2; Foreachfunctionalelementworkingpressureandcurrentcapacity;pB1,qB1;pB2,qB2iseachhydraulicpumpsuppliestheoilpressureandthecurrentcapacity.Hydraulicsystemoveralleffectivenessindex:(4.6)Intheformula:門^Forhydraulicpumpoveralleffectivenessindex;門Inordertofunctionalelementoveralleffectivenessindex;門ForreturnrouteefficiencydrawsuptheregularworkermappingandthecompilationtechnologydocumentPassesthroughafterthehydraulicsystemperformanceandtheessentialrevision,thenmaydrawuptheregularworkermapping,itincludingplanhydraulicsystemschematicdiagram,systempipelineassemblydrawingandeachkindofnon-standardpartdesigndrawing.Intheofficialhydraulicsystemschematicdiagrammustmarkvarioushydraulicpressurepartthemodelspecification.Regardingautomaticityhigherenginebed,butalsoshouldincludethemovementpartthecycleofmotionchartandtheelectro-magnet,thepressureswitchactivestatus.determinationshydraulicsystemparameterMayknowbytheoperatingmodeanalysisin,thelaborentersthestagetheloadstrengthtobebiggest,therefore,thehydrauliccylinderworkingpressureaccordingtothisloadstrengthcomputation,accordingtothehydrauliccylinderandtheloadrelations,p1=40x105Pa.Thisenginebedforthedrillholeaggregatemachine-tool,forpreventeddrillsthroughbeforewhenoccursflushesthephenomenon,thehydrauliccylinderoildischargecavityshouldhavethebackpressure,、p2=6x105Pa,forcausesquicklytoenterquicklydrawsbackthespeedtobeequal,selects=2A2thedifferentialmotioncylinder,thehypothesisquicklyenterstheoildischargepressurewhich,quicklydrawsbacktoloseforAp=7x105Pa.choiceshydraulicpressurepartchoosesthehydraulicpumpandtheelectricmotordeterminesthehydraulicpumptheworkingpressure.Fronthaddeterminedthehydrauliccylinderthebiggestworkingpressurefor40x105Pa,selectstheintakepiperoadpressuretoloseAp=8x105Pa,itsadjustmentpressureisgenerallybiggerthanthesystembiggestworkingpressure5x105Pa,thereforepumpsworkingpressurePB=(40+8+5)x105=53x105PaThisistheworkingpressurewhichthehigh-pressuredsmallcurrentcapacitypumps.Thehydrauliccylinderquicklydrawsbackwhentheworkingpressurequicklyenterswhenisbiggerthan,takesitspressuretoloseDeltap'=4x105Pa,thenquicklydrawsbacktimepumpstheworkingpressureis:PB=(16.4+4)x105=20.4x105PaThisistheworkingpressurewhichthelowpressuregreatcurrentcapacitypumps.hydraulicpumpscurrentcapacities.Quicklyenterswhenthecurrentcapacityisbiggest,itsvalueis30L/min,thequantityenterswhenthelabor,itsvalueis0.51L/min,takesK=1.2,Then: qB=1.2x0.5x10-3=36L/minBecausetimetheoverflowvalvesteadyworkmostissmallis3L/min,thereforeslightlypumpsthecurrentcapacitytotake3.6L/minCalculatesaccordingtoabove,selectstheYYB-AA36/6Bdoublejointvanepumpdefinitepipelinessizes:Accordingtotheworkingpressureandthecurrentcapacity,accordingtothetype(3.5),thetype(3.6)determinethepipelineinsidediameterandwallthickness,(Omits)determinationsfuel-tankcapacityfuel-tankcapacitymayaccordingtotheempiricalformulaestimate,takeV=(5?7)q.Inthisexample:V=6q=6(6+36)=252Lrelatedsystemperformanceomits.中文翻譯中文翻譯液壓傳動系統(tǒng)設計與計算1.明確設計要求進行工況分析在設計液壓系統(tǒng)時,首先應明確以下問題,并將其作為設計依據。主機的用途、工藝過程、總體布局以及對液壓傳動裝置的位置和空間尺寸的要求;主機對液壓系統(tǒng)的性能要求,如自動化程度、調速范圍、運動平穩(wěn)性、換向定位精度以及對系統(tǒng)的效率、溫升等的要求;液壓系統(tǒng)的工作環(huán)境,如溫度、濕度、振動沖擊以及是否有腐蝕性和易燃物質存在等情況。在上述工作的基礎上,應對主機進行工況分析,工況分析包括運動分析和動力分析,對復雜的系統(tǒng)還需編制負載和動作循環(huán)圖,由此了解液壓缸或液壓馬達的負載和速度隨時間變化的規(guī)律,以下對工況分析的內容作具體介紹。1.1運動分析主機的執(zhí)行元件按工藝要求的運動情況,可以用位移循環(huán)圖(L—t),速度循環(huán)圖(v—t),或速度與位移循環(huán)圖表示,由此對運動規(guī)律進行分析。1.1.1位移循環(huán)圖L-t圖1.1為液壓機的液壓缸位移循環(huán)圖,縱坐標L表示活塞位移,橫坐標t表示從活塞啟動到返回原位的時間,曲線斜率表示活塞移動速度。1.1.2速度循環(huán)圖v—t(或v—L)工程中液壓缸的運動特點可歸納為三種類型。圖1.2為三種類型液壓缸的v—t圖,第一種如圖1.2中實線所示,液壓缸開始作勻加速運動,然后勻速運動,最后勻減速運動到終點;第二種,液壓缸在總行程的前一半作勻加速運動,在另一半作勻減速運動,且加速度的數值相等;第三種,液壓缸在總行程的一大半以上以較小的加速度作勻加速運動,然后勻減速至行程終點。v—t圖的三條速度曲線,不僅清楚地表明了三種類型液壓缸的運動規(guī)律,也間接地表明了三種工況的動力特性。1.2動力分析動力分析,是研究機器在工作過程中,其執(zhí)行機構的受力情況,對液壓系統(tǒng)而言,就是研究液壓缸或液壓馬達的負載情況。1.2.1液壓缸的負載及負載循環(huán)圖液壓缸的負載力計算工作機構作直線往復運動時,液壓缸必須克服的負載由六部分組成:F=F+F+F+F+F+Fcfigmb (1.1)式中:Fc為切削阻力;Ff為摩擦阻力;Fi為慣性阻力;Fg為重力;Fm為密封阻力;Fb為排油阻力。液壓缸運動循環(huán)各階段的總負載力液壓缸運動循環(huán)各階段的總負載力計算,一般包括啟動加速、快進、工進、快退、減速制動等幾個階段,每個階段的總負載力是有區(qū)別的。啟動加速階段:這時液壓缸或活塞處于由靜止到啟動并加速到一定速度,其總負載力包括導軌的摩擦力、密封裝置的摩擦力(按缸的機械效率門=0.9計算)、重力和慣性力等項,即:TOC\o"1-5"\h\z\o"CurrentDocument"F=F+F+F+F+F (1.2)快速階段:\o"CurrentDocument"F=F+F+F+F (1.3)工進階段:□\o"CurrentDocument"F=F+F+F+F+Fb (1.4)減速:\o"CurrentDocument"F=F+F+F+F+F (1.5)對簡單液壓系統(tǒng),上述計算過程可簡化。例如采用單定量泵供油,只需計算工進階段的總負載力,若簡單系統(tǒng)采用限壓式變量泵或雙聯(lián)泵供油,則只需計算快速階段和工進階段的總負載力。1.2.2液壓馬達的負載工作機構作旋轉運動時,液壓馬達必須克服的外負載為:TOC\o"1-5"\h\z\o"CurrentDocument"M=M+M$+M (1.6)工作負載力矩Me。工作負載力矩可能是定值,也可能隨時間變化,應根據機器工作條件進行具體分析。摩擦力矩Mf。為旋轉部件軸頸處的摩擦力矩,其計算公式為:\o"CurrentDocument"Mf=GFR(N-M) (1.7)式中:G為旋轉部件的重量(N);f為摩擦因數,啟動時為靜摩擦因數,啟動后為動摩擦因數;R為軸頸半徑(m)。慣性力矩M。為旋轉部件加速或減速時產生的慣性力矩,其計算公式為:\o"CurrentDocument"M=J心(N-M) (1.8)式中:£為角加速度(r/s2);電為角速度的變化(r/s);At為加速或減速時間(s);J為旋轉部件的轉動慣量(Kg-m2),。J=1GD2.4G式中:GD2為回轉部件的飛輪效應(N-M2)。各種回轉體的GD2可查《機械設計手冊》。根據式(1.6),分別算出液壓馬達在一個工作循環(huán)內各階段的負載大小,便可繪制液壓馬達的負載循環(huán)圖2確定液壓系統(tǒng)主要參數2.1液壓缸的設計計算2.1.1初定液壓缸工作壓力液壓缸工作壓力主要根據運動循環(huán)各階段中的最大總負載力來確定,此外,還需要考慮以下因素:各類設備的不同特點和使用場合??紤]經濟和重量因素,壓力選得低,則元件尺寸大,重量重;壓力選得高一些,則元件尺寸小,重量輕,但對元件的制造精度,密封性能要求高。所以,液壓缸的工作壓力的選擇有兩種方式:一是根據機械類型選;二是根據切削負載選。如表2.1、表2.2所示。表2.1按負載選執(zhí)行文件的工作壓力負載/N<5000500?1000010000?2000020000?3000030000?50000>50000工作壓力/MPa<0.8-11.5?22.5?33?44?5>5表2.2按機械類型選執(zhí)行文件的工作壓力機械類型機 床農業(yè)機械工程機械磨床組合機床龍門刨床拉床工作壓力/MPaa<23?5<88?1010?1620?322.2液壓馬達的設計計算2.2.1計算液壓馬達排量液壓馬達排量根據下式決定:V=6.28T/'AP門.(m3/r) (2.1)式中:T為液壓馬達的負載力矩(N-m);△匕為液壓馬達進出口壓力差(Nm3);門min為液壓馬達的機械效率,一般齒輪和柱塞馬達取0.9?0.95,葉片馬達取0.8?0.93液壓元件的選擇3.1液壓泵的確定與所需功率的計算3.1.1液壓泵的確定確定液壓泵的最大工作壓力。液壓泵所需工作壓力的確定,主要根據液壓缸在工作循環(huán)各階段所需最大壓力P1,再加上油泵的出油口到缸進油口處總的壓力損失ZAp,即(3.1)p=p+ZAP(3.1)Zap包括油液流經流量閥和其他元件的局部壓力損失、管路沿程損失等,在系統(tǒng)管路未設計之前,可根據同類系統(tǒng)經驗估計,一般管路簡單的節(jié)流閥調速系統(tǒng)ZAP為(2?5)x105Pa,用調速閥及管路復雜的系統(tǒng)ZAP為(5?15)x105Pa,ZAP也可只考慮流經各控制閥的壓力損失,而將管路系統(tǒng)的沿程損失忽略不計,各閥的額定壓力損失可從液壓元件手冊或產品樣本中查找,也可參照表1.3選取。表3.1常用中、低壓各類閥的壓力損失心?)閥名△pn(x105Pa)閥名△pn(x105Pa)閥名△pn(x105Pa)閥名△pn(x105Pa)單向閥0.3?0.5背壓閥3?8行程閥1.5?2轉閥1.5?2換向閥1.5?3節(jié)流閥2?3順序閥1.5?3調速閥3?53.1.2確定液壓泵的流量qB泵的流量qB根據執(zhí)行元件動作循環(huán)所需最大流量qmax和系統(tǒng)的泄漏確定。多液壓缸同時動作時,液壓泵的流量要大于同苻動作的幾個液壓卸或馬達)所需的最大流量,并應考慮系統(tǒng)的泄漏和液壓泵磨損后容積效率的下降,即q=K(Zq) (m3/s) (3.2)B max式中:K為系統(tǒng)泄漏系數,一般取1.1?1.3,大流量取小值,小流量取大值;(Zq)max為同時動作的液壓缸(或馬達)的最大總流量(m3/s)。選擇液壓泵的規(guī)格:根據上面所計算的最大壓力pB和流量qB,查液壓元件產品樣本,選擇與PB和qB相當的液壓泵的規(guī)格型號。表3.2液壓泵的總效率液壓泵類型齒輪泵螺桿泵葉片泵柱塞泵總效率0.6?0.70.65?0.800.60?0.750.80?0.85按上述功率和泵的轉速,可以從產品樣本中選取標準電動機,再進行驗算,使電動機發(fā)出最大功率時,其超載量在允許范圍內。3.2閥類元件的選擇3.2.1選擇依據選擇依據為:額定壓力,最大流量,動作方式,安裝固定方式,壓力損失數值,工作性能參數和工作壽命等。3.2.2選擇閥類元件應注意的問題應盡量選用標準定型產品,除非不得已時才自行設計專用件。閥類元件的規(guī)格主要根據流經該閥油液的最大壓力和最大流量選取。選擇溢流閥時,應按液壓泵的最大流量選??;選擇節(jié)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025陜西建筑安全員知識題庫及答案
- 2025年重慶市安全員-B證(項目經理)考試題庫
- 2025年江西省建筑安全員《A證》考試題庫
- 【大學課件】工程倫理
- 【大學課件】工程建設監(jiān)理概論
- 《答謝中書書》課件1
- 物業(yè)客服培訓課件
- 單位管理制度展示選集人員管理十篇
- 2025年中國航空貨物運輸保險行業(yè)市場發(fā)展現狀及投資方向研究報告
- 單位管理制度收錄大合集【職員管理篇】
- 【正版授權】 ISO 9073-1:2023 EN Nonwovens - Test methods - Part 1: Determination of mass per unit area
- CJT156-2001 溝槽式管接頭
- 張成?!豆补芾韺W》(修訂版)課后習題詳解
- 耳穴治療糖尿病的國際趨勢
- 便利店轉讓簡單合同范本
- 腦卒中后吞咽障礙患者進食護理試題及答案
- 中草藥產業(yè)園規(guī)劃方案
- 人力資源外包投標方案
- 護理文書書寫規(guī)范
- MOOC 計量經濟學-西南財經大學 中國大學慕課答案
- 無人機測試與評估標準
評論
0/150
提交評論