版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
§3-10晶格的狀態(tài)方程和熱膨脹簡諧近似:
(1)在簡諧近似的情況下,晶格原子振動(dòng)可描述為3N個(gè)線性獨(dú)立的諧振子的疊加,各振子間不發(fā)生作用,也不交換能量;一、晶體的熱膨脹和非簡諧效應(yīng)
(2)晶體中某種聲子一旦產(chǎn)生,其數(shù)目就一直保持不變,既不能把能量傳遞給其他聲子,也不能使自己處于熱平衡狀態(tài)。用簡諧近似理論不能解釋晶體的熱膨脹和熱傳導(dǎo)現(xiàn)象。晶體的非簡諧效應(yīng):微擾項(xiàng)聲子間有相互作用能量交換系統(tǒng)達(dá)到熱平衡
兩個(gè)聲子通過非簡諧項(xiàng)的作用,而產(chǎn)生第三個(gè)聲子。這可以看成是兩個(gè)聲子的相互碰撞,最后產(chǎn)生第三個(gè)聲子。微擾項(xiàng)聲子間的相互作用遵循能量守恒和準(zhǔn)動(dòng)量守恒碰撞前后系統(tǒng)準(zhǔn)動(dòng)量不變,對熱流無影響。---正常過程(N過程);(1)---反常過程(U過程)。(2)二、熱膨脹
熱膨脹:在不施加壓力的情況下,晶體體積隨溫度變化的現(xiàn)象稱為熱膨脹。
假設(shè)有兩個(gè)原子,一個(gè)在原點(diǎn)固定不動(dòng),另一個(gè)在平衡位置R0附近作振動(dòng),離開平衡位置的位移用表示,勢能在平衡位置附近展開:0R0R0(1)簡諧近似RU(r)R0兩原子間距不變,無熱膨脹現(xiàn)象(2)非簡諧效應(yīng)兩原子間距增大,有熱膨脹現(xiàn)象。由玻爾茲曼統(tǒng)計(jì),原子離開平衡位置的平均位移(c、g均為正常數(shù)。)(1)簡諧近似:是的奇函數(shù)在簡諧近似下無熱膨脹現(xiàn)象。(2)非簡諧效應(yīng):在非簡諧效應(yīng)下,有熱膨脹現(xiàn)象。推導(dǎo)略線膨脹系數(shù)當(dāng)勢能只保留到3次方項(xiàng)時(shí),線膨脹系數(shù)與溫度無關(guān)。若保留更高次項(xiàng),則線膨脹系數(shù)與溫度有關(guān)。顯然,在簡諧近似下,g=0,=0。三、晶體的狀態(tài)方程和熱膨脹
由熱力學(xué)知,壓強(qiáng)P、熵S、定容比熱CV和自由能F之間的關(guān)系為:自由能F(T,V)是最基本的物理量,求出F(T,V),其他熱力學(xué)量或性質(zhì)就可以由熱力學(xué)關(guān)系導(dǎo)出。晶格自由能F1=U(V)F2由統(tǒng)計(jì)物理知道:Z是晶格振動(dòng)的配分函數(shù)。頻率為i的格波,配分函數(shù)為:由晶格振動(dòng)決定T=0時(shí)晶格的結(jié)合能若能求出晶格振動(dòng)的配分函數(shù),即可求得熱振動(dòng)自由能。各諧子相互獨(dú)立,忽略晶格之間的相互作用能,總配分函數(shù)為:
由于非線性振動(dòng),格波頻率i也是宏觀量V的函數(shù),所以NeutralclusteranionclusterDopantCsIhC5VCsIhC5VCSiGeSn0.000.951.230.590.000.560.410.000.440.000.060.140.000.351.090.530.001.080.350.000.800.000.060.37StructuralandelectronicpropertiesoftheneutralandtheanionclustersonIn12X(X=C,Si,Ge,Sn)ThegeometricandelectroniccharactersofIn12X(X=C,Si,Ge,Sn)clustersinitsneutralandanionicchargestateshavebeeninvestigatedusingthedensityfunctionalcalculationswiththegeneralizedgradientapproximation.ThegroundstateofIn12X(X=C,Sn)andtheanionclustershavealowsymmetryCsstructureinsteadofanicosahedron.However,theneutralandanionclustersontheSiandGeatomdopedfavoranicosahedralstructure.FortheneutralIn12X(X=C,Si,Ge,Sn)clusters,ourcalculationdemonstratethattheenergygapsbetweenthehighestoccupiedmolecularorbitalandthelowestunoccupiedmolecularorbitalare0.6ev,1.16eV,1.15eV,0.88eVrespectively,andthemagneticmomentsarezero.However,theenergygapsforitsanionclusterare<0.3eV.Theseresultscanbeexplainedbyelectronicshellclosingof2pshell(40e)forneutralclusters,andindicatethatInatomsinclustersaretrivalent.I.INTRODUCTIONSincethediscovery1andmacroscopicproduction2offullerenes,therehavebeenextensiveintereststosearchforothersimilarstableclusters.Thesestableclustersnamed“magic”clusterscouldactascandidatesfornovelcluster-assembledmaterials.Thesphericaljelliummodelpredictsthattheclusterswith2,8,20,40,...valenceelectronshavehigherstabilityduetotheclosureofelectronicshells.3,4Forexample,theAl13having39valenceelectronsbydopingasinglemonovalentatomorbysubstitutinganAlwithatetravalentatomhas40valenceelectronsandcouldgainelectronicstabilitybyclosingthe1s21p61d102s21f142p6shell,asystematicstudyofbinaryaluminum(Al)clustershasbeenperformedbothexperimentallyandtheoretically5-11recently.DopingasingleC,Si,Ge,Sn,orPbatomintoanAl12cluster,thebinaryneutralclusterscouldgaintheelectronicstabilitywithperfecticosahedrastructureand40valenceelectronsclosingtheelectronicshell.Atthesametime,thetheoreticalstudiesfoundaddingorremovingelectronsfromtheneutralclustermightalteritsstructuralandelectronicproperties8,11.Thoughthealuminum(Al)andindium(In)atombelongtothesamegroupintheperiodictableandtheyhavetwos-valenceelectronsandonep-valenceelectron,thereareonlyafewstudiesconcerningindiumclusters.Intheirclusters,theelectronicfeatureischaracterizedonlybyonepelectroninasmallclusterbecauseanenergygapexistsbetweenthesandpbands.Astheclustersizeincreases,thesandpbandshybridizationandthecomposedatomsarecharacterizedastrivalentatoms.Foraluminumclusters,ithasbeenrevealedthatthes/phybridizationoccursaroundn~5bymeasuringtheirionizationpotential(IPs)[12,13].However,forindiumclusters,ithasbeenreportedtheInatomsaremonovalentupton~15bytheirIPsandphotoelectronspectroscopy[14].AtsushiNakajimaetal[15]foundIPsofIn7NaandIn13NaclusterswerehigherthanthoseofIn7andIn13,andtheIPincrementscouldbeexplainedbyelectronicshellclosingofthe1p(8e)and2pshell(40e),whereInatomsintheclustersweremonovalentandtrivalentrespectively.Meanwhile,theIn12Na3-wasfoundbestablegeometricallyorelectronically.Itsstabilitywasexplainedbytheelectronicshellmodelcorrespondingtothe2pshellclosing(40e),whenindiumatomsweretrivalent.ButnoelectronicclosingshellstructurewasobservedinpureInnclustersaroundn=13.TheythoughttheNaatomadditioninducess/phybridizationintheInnclusters.Howeverrecently,MinoruAkutsuetal16studiedtheelectronicpropertiesofSiandGeatomsdopedInclusters,InnSimandInnGem,byphotoionizationspectroscopyoftheneutralsandphotoelectronspectroscopyoftheanions.Theyfoundthereactivityoftheclustershaslocalminimaatn=10and12forInnSiandatn=9,10,and12forInnGeindicatingthattheIn10Si(In10Ge)andIn12Si(In12Ge)werestableelectronicallyorgeometricallyascomparedtoothersizeclusters.AndthechangingsizefrommonovalenttotrivalentforInnclustersdidnotshowobviousevidence,sotheoreticalcalculationstillwasneeded.Toourbestknowledge,thereisnostudyreportedonthegeometricalandelectronicpropertiesofthetetravalentatomdopingIn12clustersbyfar.Therefore,weperformedthedensityfunctionaltheory(DFT)calculationstoexplorethestructuralandtheelectronicpropertiesofIn12XandIn12X-(X=C,Si,Ge,Sn)clusters.II.COMPUTATIONALDETAILSAllthecalculationshavebeenperformedbasingupontheall-electrondensityfunctiontheory(DFT)17withthegeneralizedgradientapproximation(GGA)
(Ref.18)usingtheDMol3package19.TheBecke-Lee-Yang-Parr(BLYP)correlationexchangefunctionisadoptedwithDNPbasisset.BLYPfunctionisthecombinationoftheexchangefunctionexploitedbyBecke20andthecorrelationfunctionexploitedbyLee,Yang,andParr21.DNPbasisfunctions,comparabletoGaussian6-31G**sets,arethedoublenumericalatomicorbitalaugumentedbypolarizationfunctions:i.e.,functionswithangularmomentumonehigherthanthatofthehighestoccupiedorbitalinthefreeatom.TheelectronicstructureisobtainedbysolvingtheKohn-Sham(KS)equations22self-consistentlyusingthespinunrestrictedscheme.Self-consistentfieldproceduresweredonewithaconvergencecriterionof10?6a.u.ontheenergyandelectrondensity.GeometryoptimizationswereperformedusingtheBroyden-Fletcher-Goldfarb-Shanno(BFGS)algorithm23withaconvergencecriterionof10-3.onthedisplacementand10-5.ontheenergy.III.RESULTSANDDISCUSSIONSOneofthemostimportantthingsinstudyingclustersistodetermineitsequilibriumgeometry.FortheneutralandanionIn12X(X=C,Si,Ge,Sn)clusters,threepossiblegeometricconfigurationswithIh,C5v,Cssymmetryshowninfig.1areconsidered.ThethreeconfigurationsarethefavorablegeometriesoftheneutralandthechargedAl12X(X=C,Si,Ge,Sn,Pb)clusters.Theicosahedronisthetetravalentatomsittingatthecenter,whiletheC5vstructureisthetetravalentatomadsorbedonthevertex.Intable.1,wetabulatedtherelativevalueofthecalculatedbindingenergiesforthestructuresasshowninFig.1intheneutralandanionstates.ForIn12X(X=C,Sn)anditsanions,wefoundtheCsgeometryisground-statestructures,whiletheicosahedrongeometryforIn12Snanditsanionisnearlyenergeticallydegenerate(ΔE=0.06eV).ThestructurewithIhsymmetrywaslowest-energystructureofAl12Snchargedcluster8,10.Meanwhile,ourcalculationshowsthattheicosahedraconfigurationisthegroundstatesofIn12X(X=Si,Ge)anditsanionclusters.ThoughthedifferenceofthebindingenergybetweentheIhandCsstructurefortheIn12Snanditsanionclusterisverylitter,theCsgeometryhasthehigherbindingenergy(0.35eV~0.60eV)fortheSiandGeatomdopingIn12clusterseitherintheneutralorintheanionsthantheIhgeometry.TheaverageIn-SnandIn-InbondlengthsintheCsstructureforIn12Snare3.507?and3.295???forIn12Sn-respectively.WhiletheaverageIn-CandIn-InbondlengthsintheCsstructureforIn12Care2.464?and3.315???forIn12C-.Fortheseclusters,therearetwelveX(Si,Ge,Sn)-InbondsintheIhstructures,whiletheCsstructureshaveonlyfiveX-Inbonds.ThesingleSiandGeatomssitatthecenteroftheicosahedron.IntheseclusterswithIh??forIn12SiandIn12????forIn12SiandIn12??foritsanion.FromtheSitoGe,thesizeofclustersisincreasingfortheIn12SiandIn12Geclusters,whichmayattributetothesizeofatomdopedsittingatthecenteroftheclusters,andsuggestsalsothebondingstrengthisweakerandweaker.Andthesizeoftheclustersforneutralclusterissmallerthanitsanion,whichindicatesthenetchargehasanobviouseffectonthestructureofSiandGedopingIn12clusters.InFig.2,Weshowthedensityofstates(DOS)ofthegroundstatesstructures.Thedensityofstatesiscalculatedbybroadeningthebandenergyofeachorbitalwiththeline-shapeLorentzianfunction.TheDOSforthegroundstatesofneutralclustersandtheiranionclustersareshownforadirectcomparison.Fromtheresults,wecouldseethatthegroundstatesstructurewiththesamesymmetryhadthesimilarstatesdensity(DOS).Forexample,theIn12SiandIn12GeclusterswithIhsymmetry,thelocationsandwidthsoftheirpeaksarealmostsame.FortheIn12CandIn12SnwiththesameCssymmetry,theirDOSarealmostsimilar,exceptthatthepeakwidthoftheIn12CislargerthantheclusterdopedSn,whichmayattributetothelocationoftheatomsdopedinPeriodicTable.AsonemovedowntothePeriodicTable,theelementbecomesincreasinglymoremetallicandlesselectronegative,andthesizeislargemoreandmore.ComparingtheDOSoftheanionclusterswiththeirneutralclusters’,wecouldseetheenergylevelsofelectroncouldbealteredbyaddinganelectron.Forexample,thefirsthighpeakfromtheleft,itislocalizedataround-3.8eVintheneutralstateforIn12SiandIn12GehavingthesameIhstructure.However,itisshiftedtoaround-4.4eVintheanionclusters.Takingawayanelectronincreasestheenergylevelofthevalenceelectron.XiLietal10hasputforwardthattheelectronegativityandthesizeofatomsbetwoimportantfactorsinthestructureevolutionfortheAl12X-speciesfromX=CtoPb.TheythoughtthattheAl12C-favoredtheCsstructurebecauseofthehighelectronegativity,andtheCsstructurewasthegroundstateofAl12Snforitslargesize.Inourcomputation,thegroundstatesofIn12CandIn12SnfavoringCsstructuresatisfyapparentlythereason.Thetotalelectrondensityoftheneutralclustersisshowninfig.3.WecouldseetheelectrondistributionofCinIn12CislitterthanotherIndiumcluster,whilethedifferenceexistshardlyinIn12Sn.InthePeriodicTable,theSnantInatomisproximateandthustheirelectronegativityaresamenearly.ButtheelectronegativityofCatomishigherthanthem,whichresultsinthedifferenceofthetotalelectrondensity.Infig.3,weshowalsothetotalelectrondensityoftheneutralIn12SiandIn12GeclusterswithsameIhstructure.TheelectrondistributionofInatomsinIn12SiandIn12Geclustersissameduetotheirhighsymmetry,WealsocarriedouttheHOMO-LUMObandgap,andfoundtheneutralclusterduetotheclosedelectronicshellpredictedbythejelliummodelhadalargerbandgapthantheiranionclusters.Theyare0.6,1.16,1.15,0.88eVforC,Si,Ge,Sndopedclusters,respectively.Fromtheseresults,wecouldseethestructuraleffectsonthebandgap.ThestablestructuresforIn12SiandIn12Gearetheicosahedron,andtheirbandgapsarearound1.15eV.However,thebandgapoftheCsstructuresthatarethegroundstatesofIn12CandIn12Sn,aresmallerthantheclusterswithIhstructure,whichindicatestheIhstructurewithhighsymmetrywillbekineticallymorestablethantheCsstructure.Comparingtheneutralclusters,thebandgapoftheiranionisallsmaller(<0.3eV).Sotheneutralclustersareverystablekinetically,andconsistentwithcompletelythejelliummodelfor40electrons.AndtheHOMO-LUMOgapsoftheneutralIn12X(X=Si,Ge)havingclosedelectronicstructureswereabout0.8eVreportedbyMinoruAkutsu20.Forhavingclosedelectronicstructure,wealsoobtainfromthespinsthatarezeroforallneutralclusters.However,thespinoftheIn12clusteris2,whichindicateitstwoelectrons(2p2)areunpaired.DuetothespinoftheneutralclustersofIn12X(X=C,Si,Ge,Sn),theyshouldhavetheclosed1S21p61d102S21f142P6electronicshell.SowesuggestthattheIndiumatombetrivalentintheIn12X,whichisconsistentwiththeresultsobtained
byAtsushiNakajimaetal23.ConclusionsWehaveperformedadensityfunctionalcalculationsonthestructuresandelectronicpropertiesofIn12X(X=C,Si,Ge,Sn)anditsanionclusterswiththegeneralizedgradientapproximation.TheCsstructurehasahighestbindingenergyfortheIn12X(X=C,Sn)andtheiranionclustersinsteadofanicosahedron.However,thehighestbindingenergystructuresaretheicosahedronfortheIn12X(X=Si,Ge)andtheiranionclusters.Foralltheneutralandanionclusters,theC5vstructuresoptimizedfromanicosahedronwithavertexcappedbyatetravalentatomhavethelowestbindingenergy.Thedifferenceofthebindingenergyisonly0.06eVbetweentheIhstructureandtheCsstructureforIn12Snanditsanion.FromtheDosoftheneutralandtheanionclusters,theadditionalchargeandthestructureaffecttheelectronicpropertiesoftheseclusters.Duetotheclosedelectronicshellfortheneutralcluster,thebandgapsbetweenthehighestoccupiedmolecularorbitalandthelowestunoccupiedmolecularorbitalare0.6ev,1.16eV,1.15eV,0.88eVfortheIn12X(X=C,Si,Ge,Sn)respectively.However,thebandgapsfortheanionclusterare<0.3eV.Moreover,wefindthespinsoftheneutralclustersarezero,whichfavorsmuchmorethe2pshellclosing.TheresultofthespinsandthebandgapsshowstheIndiumatominneutralclustersistrivalent.Fig.1TheschematicfiguresforthestateconsideredofIn12X(X=C,Si,Ge,Sn)anditsanionclusters.ThetetravalentatomsitsatthecenterofIhstructure,whiletheC5vstructuresarethetetravalentatomadsorbedonthevertex.ThetetravalentatomontheoutsideofIn12clustersformsCsstructure.Table1.ThecalculatedbindingenergiesineVforIn12X(X=C,Si,Ge,Sn)andtheiranionclusters.Fig.2ThedensityofstatesofthegroundstructuresforIn12XandIn12X-(X=C,Sn,Si,Ge)clusters.The(a)isfortheneutralclusters;the(b)isforthenegativelychargedclusters.ThedensityiscalculatedbybroadendingthebandenergyoftheoccupiedorbitalandtheunoccupiedorbitalseparatelywiththeLorentzianfunction.(a)(b)Fig.3theelectrontotaldensityof(a)theneutralIn12CandIn12SnclusterswithsameCsstructure,(b)theelectrontotaldensityoftheneutralIn12SiandIn12GeclusterswithsameIhstructure.TheatomsdopedarelocatedattheleftsideoftheCsstructures.TheSiandGeatomsarelocatedthecenterofthecage.ReferenceH.W.Kroto,J.R.Heath,S.C.O’Brien,R.F.Curl,andR.E,Smalley,Nature(London)318,162(1985).W.Kratschmer,L.D.Lamb,K.Fostiropoulos,andD.R.Huffman,Nature(London)347,354(1990).3.W.D.Knight,K.Clemenger,W.A.deHeer,W.A.Saunders,M.Y.Chou,andM.L.Cohen,Phys.Rev.Lett.52,2141(1984).W.A.deHeer,Rev.Mod.Phys.65,611(1993).,L.,Phys.Rev.B2002,65,153404.H.Kawamata,;Y.Negishi,;A.Nakajima,;,Chem.Phys.Lett.2001,337,255.D.E.Bergeron,A.W.Castleman,N.,S.N.Kahanna,Chem.Phys.Lett.2005,415,230.G.ChenandY.Kawazoe,J.Chem.Phys.2007,126,014703.K.H.YoungandJ.Jaehoon,J.Chem.Phys.2004,121(17),8500.X.Li,andL.S.Wang,Phys.Rev.B65,153404(2002).S.F.LiandX.G.Gong,Phys.Rev.B70,075404(2004).12.K.E.Schriver,,E.C.Honea,R.L.Whetten,.64,1990,2539.13.J.L.Persson,,H.P.Cheng,R.S.Berry,Chem.Phys.Lett.186,1991,215.14.M.Gausa,G.Gantef?r,H.O.Lutz,K.H.Meiwes-Broer,Int.J.Massspectrum.IonProcesses,102,227,1990.15.N.Atsushi,H.Kuniyoshi,S.Tsuneyoshi,N.Takashi,T.Tetsuya,etal,J.Phys.Chem.1993,97,86-90.16.A.Minoru,K.Kiichirou,A.Junko,M.Ken,M.Masaaki,andN.Atsushi,J.Phys.Chem.A2007,111,573-577.17.,D.Sánch
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報(bào)書:大型語料庫驅(qū)動(dòng)下現(xiàn)代漢語語體正式度指標(biāo)體系研究
- 2025版親子游樂園合伙開店合作協(xié)議3篇
- 課題申報(bào)書:楚式漆器髹飾技藝數(shù)字化保護(hù)與傳承路徑研究
- 課題申報(bào)書:陳望道與中國馬克思主義文藝?yán)碚摰慕?gòu)研究
- 2025版網(wǎng)絡(luò)直播平臺(tái)分成協(xié)議書范本3篇
- 2025版雞蛋深加工項(xiàng)目合作協(xié)議書3篇
- 2024年高效液化天然氣供應(yīng)與銷售協(xié)議模板版B版
- 2025年度廠房設(shè)備承包與智能管理服務(wù)合同2篇
- 2024年版醫(yī)療器械供應(yīng)及服務(wù)協(xié)議細(xì)則一
- 2025版食品行業(yè)食品添加劑采購合作框架協(xié)議3篇
- 貼面 貼面修復(fù)
- 應(yīng)用數(shù)學(xué)論文-定積分在生活中的應(yīng)用
- 2023年高二學(xué)業(yè)水平測試生物模擬考試試題
- 力士樂-mtx micro簡明安裝調(diào)試手冊v4updated
- GB/T 6807-2001鋼鐵工件涂裝前磷化處理技術(shù)條件
- GB/T 19867.2-2008氣焊焊接工藝規(guī)程
- GB/T 15109-1994白酒工業(yè)術(shù)語
- 膜片鉗常見問題匯總(人人都會(huì)膜片鉗)
- 校車安全逃生技能培訓(xùn)學(xué)習(xí)
- 消防設(shè)施設(shè)備檢查表
- 康復(fù)評定學(xué)試題和答案
評論
0/150
提交評論