2023屆山東省棲霞市數(shù)學(xué)高三上期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第1頁
2023屆山東省棲霞市數(shù)學(xué)高三上期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第2頁
2023屆山東省棲霞市數(shù)學(xué)高三上期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第3頁
2023屆山東省棲霞市數(shù)學(xué)高三上期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第4頁
2023屆山東省棲霞市數(shù)學(xué)高三上期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線,點(diǎn)是直線上任意一點(diǎn),若圓與雙曲線的右支沒有公共點(diǎn),則雙曲線的離心率取值范圍是().A. B. C. D.2.已知是雙曲線的左右焦點(diǎn),過的直線與雙曲線的兩支分別交于兩點(diǎn)(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.3.已知等差數(shù)列的前項(xiàng)和為,若,則等差數(shù)列公差()A.2 B. C.3 D.44.已知方程表示的曲線為的圖象,對(duì)于函數(shù)有如下結(jié)論:①在上單調(diào)遞減;②函數(shù)至少存在一個(gè)零點(diǎn);③的最大值為;④若函數(shù)和圖象關(guān)于原點(diǎn)對(duì)稱,則由方程所確定;則正確命題序號(hào)為()A.①③ B.②③ C.①④ D.②④5.已知雙曲線的左、右頂點(diǎn)分別是,雙曲線的右焦點(diǎn)為,點(diǎn)在過且垂直于軸的直線上,當(dāng)?shù)耐饨訄A面積達(dá)到最小時(shí),點(diǎn)恰好在雙曲線上,則該雙曲線的方程為()A. B.C. D.6.已知是第二象限的角,,則()A. B. C. D.7.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增 B.函數(shù)在上單調(diào)遞減C.函數(shù)圖像關(guān)于對(duì)稱 D.函數(shù)圖像關(guān)于對(duì)稱8.中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書”,指各種歷史文化知識(shí);“數(shù)”,指數(shù)學(xué).某校國學(xué)社團(tuán)開展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有()A.12種 B.24種 C.36種 D.48種9.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數(shù),黑點(diǎn)為陰數(shù).若從這10個(gè)數(shù)中任取3個(gè)數(shù),則這3個(gè)數(shù)中至少有2個(gè)陽數(shù)且能構(gòu)成等差數(shù)列的概率為()A. B. C. D.10.已知函數(shù),則下列判斷錯(cuò)誤的是()A.的最小正周期為 B.的值域?yàn)镃.的圖象關(guān)于直線對(duì)稱 D.的圖象關(guān)于點(diǎn)對(duì)稱11.函數(shù)的單調(diào)遞增區(qū)間是()A. B. C. D.12.若,滿足約束條件,則的最大值是()A. B. C.13 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知(為虛數(shù)單位),則復(fù)數(shù)________.14.已知向量滿足,且,則_________.15.函數(shù)過定點(diǎn)________.16.已知橢圓:的左、右焦點(diǎn)分別為,,如圖是過且垂直于長(zhǎng)軸的弦,則的內(nèi)切圓方程是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點(diǎn)和橢圓.直線與橢圓交于不同的兩點(diǎn),.(1)當(dāng)時(shí),求的面積;(2)設(shè)直線與橢圓的另一個(gè)交點(diǎn)為,當(dāng)為中點(diǎn)時(shí),求的值.18.(12分)如圖,四棱錐中,平面平面,若,四邊形是平行四邊形,且.(Ⅰ)求證:;(Ⅱ)若點(diǎn)在線段上,且平面,,,求二面角的余弦值.19.(12分)已知函數(shù)f(x)=x-2a-x-a(Ⅰ)若f(1)>1,求a的取值范圍;(Ⅱ)若a<0,對(duì)?x,y∈-∞,a,都有不等式f(x)≤(y+2020)+20.(12分)已知在等比數(shù)列中,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列前項(xiàng)的和.21.(12分)已知函數(shù)(I)若討論的單調(diào)性;(Ⅱ)若,且對(duì)于函數(shù)的圖象上兩點(diǎn),存在,使得函數(shù)的圖象在處的切線.求證:.22.(10分)如圖,在四棱錐中,,,.(1)證明:平面;(2)若,,為線段上一點(diǎn),且,求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據(jù)圓與雙曲線的右支沒有公共點(diǎn),可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點(diǎn),則直線與直線的距離,∵圓與雙曲線的右支沒有公共點(diǎn),則,∴,即,又故的取值范圍為,故選:B.【點(diǎn)睛】本題主要考查了直線和雙曲線的位置關(guān)系,以及兩平行線間的距離公式,其中解答中根據(jù)圓與雙曲線的右支沒有公共點(diǎn)得出是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.2、D【解析】

根據(jù)雙曲線的定義可得的邊長(zhǎng)為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點(diǎn)距離用表示,然后用余弦定理建立關(guān)系式.3、C【解析】

根據(jù)等差數(shù)列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點(diǎn)睛】本題主要考查了等差數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.4、C【解析】

分四類情況進(jìn)行討論,然后畫出相對(duì)應(yīng)的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當(dāng)時(shí),,此時(shí)不存在圖象;(2)當(dāng)時(shí),,此時(shí)為實(shí)軸為軸的雙曲線一部分;(3)當(dāng)時(shí),,此時(shí)為實(shí)軸為軸的雙曲線一部分;(4)當(dāng)時(shí),,此時(shí)為圓心在原點(diǎn),半徑為1的圓的一部分;畫出的圖象,由圖象可得:對(duì)于①,在上單調(diào)遞減,所以①正確;對(duì)于②,函數(shù)與的圖象沒有交點(diǎn),即沒有零點(diǎn),所以②錯(cuò)誤;對(duì)于③,由函數(shù)圖象的對(duì)稱性可知③錯(cuò)誤;對(duì)于④,函數(shù)和圖象關(guān)于原點(diǎn)對(duì)稱,則中用代替,用代替,可得,所以④正確.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),函數(shù)的圖象與性質(zhì),函數(shù)的零點(diǎn)概念,考查了數(shù)形結(jié)合的數(shù)學(xué)思想.5、A【解析】

點(diǎn)的坐標(biāo)為,,展開利用均值不等式得到最值,將點(diǎn)代入雙曲線計(jì)算得到答案.【詳解】不妨設(shè)點(diǎn)的坐標(biāo)為,由于為定值,由正弦定理可知當(dāng)取得最大值時(shí),的外接圓面積取得最小值,也等價(jià)于取得最大值,因?yàn)?,,所以,?dāng)且僅當(dāng),即當(dāng)時(shí),等號(hào)成立,此時(shí)最大,此時(shí)的外接圓面積取最小值,點(diǎn)的坐標(biāo)為,代入可得,.所以雙曲線的方程為.故選:【點(diǎn)睛】本題考查了求雙曲線方程,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.6、D【解析】

利用誘導(dǎo)公式和同角三角函數(shù)的基本關(guān)系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因?yàn)?由誘導(dǎo)公式可得,,即,因?yàn)?所以,由二倍角的正弦公式可得,,所以.故選:D【點(diǎn)睛】本題考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和二倍角的正弦公式;考查運(yùn)算求解能力和知識(shí)的綜合運(yùn)用能力;屬于中檔題.7、C【解析】

依題意可得,即函數(shù)圖像關(guān)于對(duì)稱,再求出函數(shù)的導(dǎo)函數(shù),即可判斷函數(shù)的單調(diào)性;【詳解】解:由,,所以函數(shù)圖像關(guān)于對(duì)稱,又,在上不單調(diào).故正確的只有C,故選:C【點(diǎn)睛】本題考查函數(shù)的對(duì)稱性的判定,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,屬于基礎(chǔ)題.8、C【解析】

根據(jù)“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰有3類排法,再考慮兩者的順序,有種,剩余的3門全排列,即可求解.【詳解】由題意,“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰時(shí),可排在第1節(jié)和第2節(jié)或第4節(jié)和第5節(jié)或第5節(jié)和第6節(jié),有3種,再考慮兩者的順序,有種,剩余的3門全排列,安排在剩下的3個(gè)位置,有種,所以“六藝”課程講座不同的排課順序共有種不同的排法.故選:C.【點(diǎn)睛】本題主要考查了排列、組合的應(yīng)用,其中解答中認(rèn)真審題,根據(jù)題設(shè)條件,先排列有限制條件的元素是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.9、C【解析】

先根據(jù)組合數(shù)計(jì)算出所有的情況數(shù),再根據(jù)“3個(gè)數(shù)中至少有2個(gè)陽數(shù)且能構(gòu)成等差數(shù)列”列舉得到滿足條件的情況,由此可求解出對(duì)應(yīng)的概率.【詳解】所有的情況數(shù)有:種,3個(gè)數(shù)中至少有2個(gè)陽數(shù)且能構(gòu)成等差數(shù)列的情況有:,共種,所以目標(biāo)事件的概率.故選:C.【點(diǎn)睛】本題考查概率與等差數(shù)列的綜合,涉及到背景文化知識(shí),難度一般.求解該類問題可通過古典概型的概率求解方法進(jìn)行分析;當(dāng)情況數(shù)較多時(shí),可考慮用排列數(shù)、組合數(shù)去計(jì)算.10、D【解析】

先將函數(shù)化為,再由三角函數(shù)的性質(zhì),逐項(xiàng)判斷,即可得出結(jié)果.【詳解】可得對(duì)于A,的最小正周期為,故A正確;對(duì)于B,由,可得,故B正確;對(duì)于C,正弦函數(shù)對(duì)稱軸可得:解得:,當(dāng),,故C正確;對(duì)于D,正弦函數(shù)對(duì)稱中心的橫坐標(biāo)為:解得:若圖象關(guān)于點(diǎn)對(duì)稱,則解得:,故D錯(cuò)誤;故選:D.【點(diǎn)睛】本題考查三角恒等變換,三角函數(shù)的性質(zhì),熟記三角函數(shù)基本公式和基本性質(zhì),考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.11、D【解析】

利用輔助角公式,化簡(jiǎn)函數(shù)的解析式,再根據(jù)正弦函數(shù)的單調(diào)性,并采用整體法,可得結(jié)果.【詳解】因?yàn)?,由,解得,即函?shù)的增區(qū)間為,所以當(dāng)時(shí),增區(qū)間的一個(gè)子集為.故選D.【點(diǎn)睛】本題考查了輔助角公式,考查正弦型函數(shù)的單調(diào)遞增區(qū)間,重點(diǎn)在于把握正弦函數(shù)的單調(diào)性,同時(shí)對(duì)于整體法的應(yīng)用,使問題化繁為簡(jiǎn),難度較易.12、C【解析】

由已知畫出可行域,利用目標(biāo)函數(shù)的幾何意義求最大值.【詳解】解:表示可行域內(nèi)的點(diǎn)到坐標(biāo)原點(diǎn)的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點(diǎn)到坐標(biāo)原點(diǎn)的距離最大,即.故選:.【點(diǎn)睛】本題考查線性規(guī)劃問題,考查數(shù)形結(jié)合的數(shù)學(xué)思想以及運(yùn)算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

解:故答案為:【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,屬于基礎(chǔ)題.14、【解析】

由數(shù)量積的運(yùn)算律求得,再由數(shù)量積的定義可得結(jié)論.【詳解】由題意,∴,即,∴.故答案為:.【點(diǎn)睛】本題考查求向量的夾角,掌握數(shù)量積的定義與運(yùn)算律是解題關(guān)鍵.15、【解析】

令,,與參數(shù)無關(guān),即可得到定點(diǎn).【詳解】由指數(shù)函數(shù)的性質(zhì),可得,函數(shù)值與參數(shù)無關(guān),所有過定點(diǎn).故答案為:【點(diǎn)睛】此題考查函數(shù)的定點(diǎn)問題,關(guān)鍵在于找出自變量的取值使函數(shù)值與參數(shù)無關(guān),熟記常見函數(shù)的定點(diǎn)可以節(jié)省解題時(shí)間.16、【解析】

利用公式計(jì)算出,其中為的周長(zhǎng),為內(nèi)切圓半徑,再利用圓心到直線AB的距離等于半徑可得到圓心坐標(biāo).【詳解】由已知,,,,設(shè)內(nèi)切圓的圓心為,半徑為,則,故有,解得,由,或(舍),所以的內(nèi)切圓方程為.故答案為:.【點(diǎn)睛】本題考查橢圓中三角形內(nèi)切圓的方程問題,涉及到橢圓焦點(diǎn)三角形、橢圓的定義等知識(shí),考查學(xué)生的運(yùn)算能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或【解析】

(1)聯(lián)立直線的方程和橢圓方程,求得交點(diǎn)的橫坐標(biāo),由此求得三角形的面積.(2)法一:根據(jù)的坐標(biāo)求得的坐標(biāo),將的坐標(biāo)都代入橢圓方程,化簡(jiǎn)后求得的坐標(biāo),進(jìn)而求得的值.法二:設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,化簡(jiǎn)后寫出根與系數(shù)關(guān)系,結(jié)合求得點(diǎn)的坐標(biāo),進(jìn)而求得的值.【詳解】(1)設(shè),,若,則直線的方程為,由,得,解得,,設(shè)直線與軸交于點(diǎn),則且.(2)法一:設(shè)點(diǎn)因?yàn)椋?,所以又點(diǎn),都在橢圓上,所以解得或所以或.法二:設(shè)顯然直線有斜率,設(shè)直線的方程為由,得所以又解得或所以或所以或.【點(diǎn)睛】本小題主要考查直線和橢圓的位置關(guān)系,考查橢圓中三角形面積的求法,考查運(yùn)算求解能力,屬于中檔題.18、(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)推導(dǎo)出BC⊥CE,從而EC⊥平面ABCD,進(jìn)而EC⊥BD,再由BD⊥AE,得BD⊥平面AEC,從而BD⊥AC,進(jìn)而四邊形ABCD是菱形,由此能證明AB=AD.(Ⅱ)設(shè)AC與BD的交點(diǎn)為G,推導(dǎo)出EC//FG,取BC的中點(diǎn)為O,連結(jié)OD,則OD⊥BC,以O(shè)為坐標(biāo)原點(diǎn),以過點(diǎn)O且與CE平行的直線為x軸,以BC為y軸,OD為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BF-D的余弦值.【詳解】(Ⅰ)證明:,即,因?yàn)槠矫嫫矫?,所以平面,所以,因?yàn)?,所以平面,所以,因?yàn)樗倪呅问瞧叫兴倪呅?,所以四邊形是菱形,故;解法一:(Ⅱ)設(shè)與的交點(diǎn)為,因?yàn)槠矫?,平面平面于,所以,因?yàn)槭侵悬c(diǎn),所以是的中點(diǎn),因?yàn)?,取的中點(diǎn)為,連接,則,因?yàn)槠矫嫫矫?,所以面,以為坐?biāo)原點(diǎn),以過點(diǎn)且與平行的直線為軸,以所在直線為軸,以所在直線為軸建立空間直角坐標(biāo)系.不妨設(shè),則,,,,,,,設(shè)平面的法向量,則,取,同理可得平面的法向量,設(shè)平面與平面的夾角為,因?yàn)?,所以二面角的余弦值?解法二:(Ⅱ)設(shè)與的交點(diǎn)為,因?yàn)槠矫?,平面平面于,所以,因?yàn)槭侵悬c(diǎn),所以是的中點(diǎn),因?yàn)?,,所以平面,所以,取中點(diǎn),連接、,因?yàn)?,所以,故平面,所以,即是二面角的平面角,不妨設(shè),因?yàn)?,,在中,,所以,所以二面角的余弦值?【點(diǎn)睛】本題考查求空間角中的二面角的余弦值,還考查由空間中線面關(guān)系進(jìn)而證明線線相等,屬于中檔題.19、(Ⅰ)(-∞,-1)∪(1,+∞);(Ⅱ)-1010,0.【解析】

(Ⅰ)由題意不等式化為|1-2a|-|1-a|>1,利用分類討論法去掉絕對(duì)值求出不等式的解集即可;(Ⅱ)由題意把問題轉(zhuǎn)化為[f(x)]max≤[|y+2020|+|y-a|]min,分別求出【詳解】(Ⅰ)由題意知,f(1)=|1-2a|-|1-a|>1,若a≤12,則不等式化為1-2a-1+a>1,解得若12<a<1,則不等式化為2a-1-(1-a)>1,解得若a≥1,則不等式化為2a-1+1-a>1,解得a>1,綜上所述,a的取值范圍是(-∞,-1)∪(1,+∞);(Ⅱ)由題意知,要使得不等式f(x)≤|(y+2020)|+|y-a|恒成立,只需[f(x)]max當(dāng)x∈(-∞,a]時(shí),|x-2a|-|x-a|≤-a,[f(x)]max因?yàn)閨y+2020|+|y-a|≥|a+2020|,所以當(dāng)(y+2020)(y-a)≤0時(shí),[|y+2020|+|y-a|]min即-a≤|a+2020|,解得a≥-1010,結(jié)合a<0,所以a的取值范圍是[-1010,0).【點(diǎn)睛】本題考查了絕對(duì)值不等式的求解問題,含有絕對(duì)值的不等式恒成立應(yīng)用問題,以及絕對(duì)值三角不等式的應(yīng)用,考查了分類討論思想,是中檔題.含有絕對(duì)值的不等式恒成立應(yīng)用問題,關(guān)鍵是等價(jià)轉(zhuǎn)化為最值問題,再通過絕對(duì)值三角不等式求解最值,從而建立不等關(guān)系,求出參數(shù)范圍.20、(1)(2)【解析】

(1)由基本量法,求出公比后可得通項(xiàng)公式;(2)求出,用裂項(xiàng)相消法求和.【詳解】解:(1)設(shè)等比數(shù)列的公比為又因?yàn)?,所以解得(舍)或所以,即?)據(jù)(1)求解知,,所以所以【點(diǎn)睛】本題考查求等比數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求和.解題方法是基本量法.基本量法是解決等差數(shù)列和等比數(shù)列的基本方法,務(wù)必掌握.21、(1)見解析(2)見證明【解析】

(1)對(duì)函數(shù)求導(dǎo),分別討論,以及,即可得出結(jié)果;(2)根據(jù)題意,由導(dǎo)數(shù)幾何意義得到,將證明轉(zhuǎn)化為證明即可,再令,設(shè),用導(dǎo)數(shù)方法判斷出的單調(diào)性,進(jìn)而可得出結(jié)論成立.【詳解】(1)解:易得,函數(shù)的定義域?yàn)?,,令,得?①當(dāng)時(shí),時(shí),,函數(shù)單調(diào)遞減;時(shí),/r/

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論