![江西省吉水2023學年高三第三次測評數學試卷含解析_第1頁](http://file4.renrendoc.com/view/fa0c832865d6b2ccc4ff6020e7181cda/fa0c832865d6b2ccc4ff6020e7181cda1.gif)
![江西省吉水2023學年高三第三次測評數學試卷含解析_第2頁](http://file4.renrendoc.com/view/fa0c832865d6b2ccc4ff6020e7181cda/fa0c832865d6b2ccc4ff6020e7181cda2.gif)
![江西省吉水2023學年高三第三次測評數學試卷含解析_第3頁](http://file4.renrendoc.com/view/fa0c832865d6b2ccc4ff6020e7181cda/fa0c832865d6b2ccc4ff6020e7181cda3.gif)
![江西省吉水2023學年高三第三次測評數學試卷含解析_第4頁](http://file4.renrendoc.com/view/fa0c832865d6b2ccc4ff6020e7181cda/fa0c832865d6b2ccc4ff6020e7181cda4.gif)
![江西省吉水2023學年高三第三次測評數學試卷含解析_第5頁](http://file4.renrendoc.com/view/fa0c832865d6b2ccc4ff6020e7181cda/fa0c832865d6b2ccc4ff6020e7181cda5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合A={x|x<1},B={x|},則A. B.C. D.2.設a,b都是不等于1的正數,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件3.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.44.已知三棱錐且平面,其外接球體積為()A. B. C. D.5.已知集合,,則為()A. B. C. D.6.已知半徑為2的球內有一個內接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為()A. B. C. D.7.博覽會安排了分別標有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設計兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則()A.P1?P2= B.P1=P2= C.P1+P2= D.P1<P28.如圖所示的“數字塔”有以下規(guī)律:每一層最左與最右的數字均為2,除此之外每個數字均為其兩肩的數字之積,則該“數字塔”前10層的所有數字之積最接近()A. B. C. D.9.復數()A. B. C.0 D.10.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件11.已知函數,若函數的極大值點從小到大依次記為,并記相應的極大值為,則的值為()A. B. C. D.12.用1,2,3,4,5組成不含重復數字的五位數,要求數字4不出現在首位和末位,數字1,3,5中有且僅有兩個數字相鄰,則滿足條件的不同五位數的個數是()A.48 B.60 C.72 D.120二、填空題:本題共4小題,每小題5分,共20分。13.已知一個正四棱錐的側棱與底面所成的角為,側面積為,則該棱錐的體積為__________.14.動點到直線的距離和他到點距離相等,直線過且交點的軌跡于兩點,則以為直徑的圓必過_________.15.記實數中的最大數為,最小數為.已知實數且三數能構成三角形的三邊長,若,則的取值范圍是.16.已知,為正實數,且,則的最小值為________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知x,y,z均為正數.(1)若xy<1,證明:|x+z|?|y+z|>4xyz;(2)若=,求2xy?2yz?2xz的最小值.18.(12分)為了保障全國第四次經濟普查順利進行,國家統計局從東部選擇江蘇,從中部選擇河北、湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū),在普查過程中首先要進行宣傳培訓,然后確定對象,最后入戶登記,由于種種情況可能會導致入戶登記不夠順利,這為正式普查提供了寶貴的試點經驗,在某普查小區(qū),共有50家企事業(yè)單位,150家個體經營戶,普查情況如下表所示:普查對象類別順利不順利合計企事業(yè)單位401050個體經營戶10050150合計14060200(1)寫出選擇5個國家綜合試點地區(qū)采用的抽樣方法;(2)根據列聯表判斷是否有的把握認為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關”;(3)以該小區(qū)的個體經營戶為樣本,頻率作為概率,從全國個體經營戶中隨機選擇3家作為普查對象,入戶登記順利的對象數記為,寫出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.82819.(12分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點,SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.20.(12分)已知函數.(1)解不等式:;(2)求證:.21.(12分)以直角坐標系的原點為極坐標系的極點,軸的正半軸為極軸.已知曲線的極坐標方程為,是上一動點,,點的軌跡為.(1)求曲線的極坐標方程,并化為直角坐標方程;(2)若點,直線的參數方程(為參數),直線與曲線的交點為,當取最小值時,求直線的普通方程.22.(10分)如圖,是矩形,的頂點在邊上,點,分別是,上的動點(的長度滿足需求).設,,,且滿足.(1)求;(2)若,,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】∵集合∴∵集合∴,故選A2.C【解析】
根據對數函數以及指數函數的性質求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數,對數不等式的解法,是基礎題.3.A【解析】
由傾斜角的余弦值,求出正切值,即的關系,求出雙曲線的離心率.【詳解】解:設雙曲線的半個焦距為,由題意又,則,,,所以離心率,故選:A.【點睛】本題考查雙曲線的簡單幾何性質,屬于基礎題4.A【解析】
由,平面,可將三棱錐還原成長方體,則三棱錐的外接球即為長方體的外接球,進而求解.【詳解】由題,因為,所以,設,則由,可得,解得,可將三棱錐還原成如圖所示的長方體,則三棱錐的外接球即為長方體的外接球,設外接球的半徑為,則,所以,所以外接球的體積.故選:A【點睛】本題考查三棱錐的外接球體積,考查空間想象能力.5.C【解析】
分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數函數的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.6.D【解析】
分別求出球和圓柱的體積,然后可得比值.【詳解】設圓柱的底面圓半徑為,則,所以圓柱的體積.又球的體積,所以球的體積與圓柱的體積的比,故選D.【點睛】本題主要考查幾何體的體積求解,側重考查數學運算的核心素養(yǎng).7.C【解析】
將三輛車的出車可能順序一一列出,找出符合條件的即可.【詳解】三輛車的出車順序可能為:123、132、213、231、312、321方案一坐車可能:132、213、231,所以,P1=;方案二坐車可能:312、321,所以,P1=;所以P1+P2=故選C.【點睛】本題考查了古典概型的概率的求法,常用列舉法得到各種情況下基本事件的個數,屬于基礎題.8.A【解析】
結合所給數字特征,我們可將每層數字表示成2的指數的形式,觀察可知,每層指數的和成等比數列分布,結合等比數列前項和公式和對數恒等式即可求解【詳解】如圖,將數字塔中的數寫成指數形式,可發(fā)現其指數恰好構成“楊輝三角”,前10層的指數之和為,所以原數字塔中前10層所有數字之積為.故選:A【點睛】本題考查與“楊輝三角”有關的規(guī)律求解問題,邏輯推理,等比數列前項和公式應用,屬于中檔題9.C【解析】略10.A【解析】
,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【點睛】本題考查了線面和面面垂直的判定與性質定理、簡易邏輯的判定方法,考查了推理能力與計算能力.11.C【解析】
對此分段函數的第一部分進行求導分析可知,當時有極大值,而后一部分是前一部分的定義域的循環(huán),而值域則是每一次前面兩個單位長度定義域的值域的2倍,故此得到極大值點的通項公式,且相應極大值,分組求和即得【詳解】當時,,顯然當時有,,∴經單調性分析知為的第一個極值點又∵時,∴,,,…,均為其極值點∵函數不能在端點處取得極值∴,,∴對應極值,,∴故選:C【點睛】本題考查基本函數極值的求解,從函數表達式中抽離出相應的等差數列和等比數列,最后分組求和,要求學生對數列和函數的熟悉程度高,為中檔題12.A【解析】
對數字分類討論,結合數字中有且僅有兩個數字相鄰,利用分類計數原理,即可得到結論【詳解】數字出現在第位時,數字中相鄰的數字出現在第位或者位,共有個數字出現在第位時,同理也有個數字出現在第位時,數字中相鄰的數字出現在第位或者位,共有個故滿足條件的不同的五位數的個數是個故選【點睛】本題主要考查了排列,組合及簡單計數問題,解題的關鍵是對數字分類討論,屬于基礎題。二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
如圖所示,正四棱錐,為底面的中心,點為的中點,則,設,根據正四棱錐的側面積求出的值,再利用勾股定理求得正四棱錐的高,代入體積公式,即可得到答案.【詳解】如圖所示,正四棱錐,為底面的中心,點為的中點,則,設,,,,,,.故答案為:.【點睛】本題考查棱錐的側面積和體積,考查函數與方程思想、轉化與化歸思想,考查運算求解能力.14.【解析】
利用動點到直線的距離和他到點距離相等,,可知動點的軌跡是以為焦點的拋物線,從而可求曲線的方程,將,代入,利用韋達定理,可得,從而可知以為直徑的圓經過原點O.【詳解】設點,由題意可得,,,可得,設直線的方程為,代入拋物線可得,,,,以AB為直徑的圓經過原點.故答案為:(0,0)【點睛】本題考查了拋物線的定義,考查了直線和拋物線的交匯問題,同時考查了方程的思想和韋達定理,考查了運算能力,屬于中檔題.15.【解析】試題分析:顯然,又,①當時,,作出可行區(qū)域,因拋物線與直線及在第一象限內的交點分別是(1,1)和,從而②當時,,作出可行區(qū)域,因拋物線與直線及在第一象限內的交點分別是(1,1)和,從而綜上所述,的取值范圍是.考點:不等式、簡單線性規(guī)劃.16.【解析】
由,為正實數,且,可知,于是,可得,再利用基本不等式即可得出結果.【詳解】解:,為正實數,且,可知,,.當且僅當時取等號.的最小值為.故答案為:.【點睛】本題考查了基本不等式的性質應用,恰當變形是解題的關鍵,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2)最小值為1【解析】
(1)利用基本不等式可得,再根據0<xy<1時,即可證明|x+z|?|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,從而求出2xy?2yz?2xz的最小值.【詳解】(1)證明:∵x,y,z均為正數,∴|x+z|?|y+z|=(x+z)(y+z)≥=,當且僅當x=y=z時取等號.又∵0<xy<1,∴,∴|x+z|?|y+z|>4xyz;(2)∵=,即.∵,,,當且僅當x=y=z=1時取等號,∴,∴xy+yz+xz≥3,∴2xy?2yz?2xz=2xy+yz+xz≥1,∴2xy?2yz?2xz的最小值為1.【點睛】本題考查了利用綜合法證明不等式和利用基本不等式求最值,考查了轉化思想和運算能力,屬中檔題.18.(1)分層抽樣,簡單隨機抽樣(抽簽亦可)(2)有(3)分布列見解析,【解析】
(1)根據題意可以選用分層抽樣法,或者簡單隨機抽樣法.(2)由已知條件代入公式計算出結果,進而可以得到結果.(3)由已知條件計算出的分布列,進而求出的數學期望.【詳解】(1)分層抽樣,簡單隨機抽樣(抽簽亦可).(2)將列聯表中的數據代入公式計算得所以有的把握認為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關”.(3)以頻率作為概率,隨機選擇1家個體經營戶作為普查對象,入戶登記順利的概率為.可取0,1,2,3,計算可得的分布列為:0123【點睛】本題考查了運用數學模型解答實際生活問題,運用合理的抽樣方法,計算以及數據的分布列和數學期望,需要正確運用公式進行求解,本題屬于??碱}型,需要掌握解題方法.19.(I)證明見解析;(II)1【解析】
(I)過D作DE⊥BC于E,連接SE,根據勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過點D作DF⊥SE于F,證明DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,計算夾角得到答案.【詳解】(I)過D作DE⊥BC于E,連接SE,根據角度的垂直關系易知:AC=1,AB=SB=2,CS=CB=3,故DE=BDsin∠CBD=6根據余弦定理:13+SE2-2故SE⊥BC,DE⊥BC,SE∩DE=E,故BC⊥平面SED,SD?平面SED,故SD⊥BC.(II)過點D作DF⊥SE于F,BC⊥平面SED,DF?平面SED,故DF⊥BC,DF⊥SE,BC∩SE=E,故DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,SD2=S故sin∠ESD=【點睛】本題考查了線線垂直,線面夾角,意在考查學生的計算能力和空間想象能力.20.(1);(2)見解析.【解析】
(1)代入得,分類討論,解不等式即可;(2)利用絕對值不等式得性質,,,比較大小即可.【詳解】(1)由于,于是原不等式化為,若,則,解得;若,則,解得;若,則,解得.綜上所述,不等式解集為.(2)由已知條件,對于,可得.又,由于,所以.又由于,于是.所以.【點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 讓課堂充滿生機與活力
- 2025年槍托項目可行性研究報告
- 2025年度航空航天裝備研發(fā)合作合同
- 信用社終止貸款合同范本
- 儲值合同范本
- 保時捷買賣合同范本
- 公司對個人轉讓合同范例
- 優(yōu)信網出租車合同范例
- 交通管制合同范本
- 企業(yè)公司聘用合同范本
- 高中物理《光電效應》
- 烹飪實訓室安全隱患分析報告
- 《金屬加工的基礎》課件
- 運輸行業(yè)春節(jié)安全生產培訓 文明駕駛保平安
- 體驗式沙盤-收獲季節(jié)
- HGE系列電梯安裝調試手冊(ELS05系統SW00004269,A.4 )
- 找人辦事協議
- 老年護理陪護培訓課件
- 醬香型白酒工廠設計
- 第3章 環(huán)境感知技術
- 牽引管道孔壁與管道外壁之間注漿技術方案
評論
0/150
提交評論