遼寧省瓦房店市2023年高考數學五模試卷含解析_第1頁
遼寧省瓦房店市2023年高考數學五模試卷含解析_第2頁
遼寧省瓦房店市2023年高考數學五模試卷含解析_第3頁
遼寧省瓦房店市2023年高考數學五模試卷含解析_第4頁
遼寧省瓦房店市2023年高考數學五模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定義在上的函數,,,,則,,的大小關系為()A. B. C. D.2.為計算,設計了如圖所示的程序框圖,則空白框中應填入()A. B. C. D.3.已知集合,,若,則()A.4 B.-4 C.8 D.-84.在中,,,,為的外心,若,,,則()A. B. C. D.5.如圖所示程序框圖,若判斷框內為“”,則輸出()A.2 B.10 C.34 D.986.設,是方程的兩個不等實數根,記().下列兩個命題()①數列的任意一項都是正整數;②數列存在某一項是5的倍數.A.①正確,②錯誤 B.①錯誤,②正確C.①②都正確 D.①②都錯誤7.已知函數,若則()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)8.關于圓周率,數學發(fā)展史上出現過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發(fā),某同學通過下面的隨機模擬方法來估計的值:先用計算機產生個數對,其中,都是區(qū)間上的均勻隨機數,再統(tǒng)計,能與構成銳角三角形三邊長的數對的個數﹔最后根據統(tǒng)計數來估計的值.若,則的估計值為()A. B. C. D.9.2019年10月1日,中華人民共和國成立70周年,舉國同慶.將2,0,1,9,10這5個數字按照任意次序排成一行,拼成一個6位數,則產生的不同的6位數的個數為A.96 B.84 C.120 D.36010.已知全集,則集合的子集個數為()A. B. C. D.11.已知等差數列的前項和為,,,則()A.25 B.32 C.35 D.4012.已知函數,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知一組數據,1,0,,的方差為10,則________14.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積是_____;最長棱的長度是_____.15.已知集合U={1,3,5,9},A={1,3,9},B={1,9},則?U(A∪B)=________.16.設f(x)=etx(t>0),過點P(t,0)且平行于y軸的直線與曲線C:y=f(x)的交點為Q,曲線C過點Q的切線交x軸于點R,若S(1,f(1)),則△PRS的面積的最小值是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(1)當時,求不等式的解集;(2)若函數的值域為A,且,求a的取值范圍.18.(12分)如圖,在三棱柱中,、、分別是、、的中點.(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.19.(12分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點P在棱DF上.(1)若P是DF的中點,求異面直線BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長度.20.(12分)已知函數.(1)若曲線存在與軸垂直的切線,求的取值范圍.(2)當時,證明:.21.(12分)(選修4-4:坐標系與參數方程)在平面直角坐標系,已知曲線(為參數),在以原點為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)過點且與直線平行的直線交于,兩點,求點到,的距離之積.22.(10分)已知橢圓的焦距是,點是橢圓上一動點,點是橢圓上關于原點對稱的兩點(與不同),若直線的斜率之積為.(Ⅰ)求橢圓的標準方程;(Ⅱ)是拋物線上兩點,且處的切線相互垂直,直線與橢圓相交于兩點,求的面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

先判斷函數在時的單調性,可以判斷出函數是奇函數,利用奇函數的性質可以得到,比較三個數的大小,然后根據函數在時的單調性,比較出三個數的大小.【詳解】當時,,函數在時,是增函數.因為,所以函數是奇函數,所以有,因為,函數在時,是增函數,所以,故本題選D.【點睛】本題考查了利用函數的單調性判斷函數值大小問題,判斷出函數的奇偶性、單調性是解題的關鍵.2.A【解析】

根據程序框圖輸出的S的值即可得到空白框中應填入的內容.【詳解】由程序框圖的運行,可得:S=0,i=0滿足判斷框內的條件,執(zhí)行循環(huán)體,a=1,S=1,i=1滿足判斷框內的條件,執(zhí)行循環(huán)體,a=2×(﹣2),S=1+2×(﹣2),i=2滿足判斷框內的條件,執(zhí)行循環(huán)體,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…觀察規(guī)律可知:滿足判斷框內的條件,執(zhí)行循環(huán)體,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此時,應該不滿足判斷框內的條件,退出循環(huán),輸出S的值,所以判斷框中的條件應是i<1.故選:A.【點睛】本題考查了當型循環(huán)結構,當型循環(huán)是先判斷后執(zhí)行,滿足條件執(zhí)行循環(huán),不滿足條件時算法結束,屬于基礎題.3.B【解析】

根據交集的定義,,可知,代入計算即可求出.【詳解】由,可知,又因為,所以時,,解得.故選:B.【點睛】本題考查交集的概念,屬于基礎題.4.B【解析】

首先根據題中條件和三角形中幾何關系求出,,即可求出的值.【詳解】如圖所示過做三角形三邊的垂線,垂足分別為,,,過分別做,的平行線,,由題知,則外接圓半徑,因為,所以,又因為,所以,,由題可知,所以,,所以.故選:D.【點睛】本題主要考查了三角形外心的性質,正弦定理,平面向量分解定理,屬于一般題.5.C【解析】

由題意,逐步分析循環(huán)中各變量的值的變化情況,即可得解.【詳解】由題意運行程序可得:,,,;,,,;,,,;不成立,此時輸出.故選:C.【點睛】本題考查了程序框圖,只需在理解程序框圖的前提下細心計算即可,屬于基礎題.6.A【解析】

利用韋達定理可得,,結合可推出,再計算出,,從而推出①正確;再利用遞推公式依次計算數列中的各項,以此判斷②的正誤.【詳解】因為,是方程的兩個不等實數根,所以,,因為,所以,即當時,數列中的任一項都等于其前兩項之和,又,,所以,,,以此類推,即可知數列的任意一項都是正整數,故①正確;若數列存在某一項是5的倍數,則此項個位數字應當為0或5,由,,依次計算可知,數列中各項的個位數字以1,3,4,7,1,8,9,7,6,3,9,2為周期,故數列中不存在個位數字為0或5的項,故②錯誤;故選:A.【點睛】本題主要考查數列遞推公式的推導,考查數列性質的應用,考查學生的綜合分析以及計算能力.7.C【解析】

利用導數求得在上遞增,結合與圖象,判斷出的大小關系,由此比較出的大小關系.【詳解】因為,所以在上單調遞增;在同一坐標系中作與圖象,,可得,故.故選:C【點睛】本小題主要考查利用導數研究函數的單調性,考查利用函數的單調性比較大小,考查數形結合的數學思想方法,屬于中檔題.8.B【解析】

先利用幾何概型的概率計算公式算出,能與構成銳角三角形三邊長的概率,然后再利用隨機模擬方法得到,能與構成銳角三角形三邊長的概率,二者概率相等即可估計出.【詳解】因為,都是區(qū)間上的均勻隨機數,所以有,,若,能與構成銳角三角形三邊長,則,由幾何概型的概率計算公式知,所以.故選:B.【點睛】本題考查幾何概型的概率計算公式及運用隨機數模擬法估計概率,考查學生的基本計算能力,是一個中檔題.9.B【解析】

2,0,1,9,10按照任意次序排成一行,得所有不以0開頭的排列數共個,其中含有2個10的排列數共個,所以產生的不同的6位數的個數為.故選B.10.C【解析】

先求B.再求,求得則子集個數可求【詳解】由題=,則集合,故其子集個數為故選C【點睛】此題考查了交、并、補集的混合運算及子集個數,熟練掌握各自的定義是解本題的關鍵,是基礎題11.C【解析】

設出等差數列的首項和公差,即可根據題意列出兩個方程,求出通項公式,從而求得.【詳解】設等差數列的首項為,公差為,則,解得,∴,即有.故選:C.【點睛】本題主要考查等差數列的通項公式的求法和應用,涉及等差數列的前項和公式的應用,屬于容易題.12.C【解析】

利用三角恒等變換化簡三角函數為標準正弦型三角函數,即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點睛】本題考查利用降冪擴角公式、輔助角公式化簡三角函數,以及求三角函數的最值,屬綜合基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.7或【解析】

依據方差公式列出方程,解出即可.【詳解】,1,0,,的平均數為,所以解得或.【點睛】本題主要考查方差公式的應用.14.【解析】

由三視圖還原原幾何體,該幾何體為四棱錐,底面為直角梯形,,,側棱底面,由棱錐體積公式求棱錐體積,由勾股定理求最長棱的長度.【詳解】由三視圖還原原幾何體如下圖所示:該幾何體為四棱錐,底面為直角梯形,,,側棱底面,則該幾何體的體積為,,,因此,該棱錐的最長棱的長度為.故答案為:;.【點睛】本題考查由三視圖求體積、棱長,關鍵是由三視圖還原原幾何體,是中檔題.15.{5}【解析】易得A∪B=A={1,3,9},則?U(A∪B)={5}.16.【解析】

計算R(t,0),PR=t﹣(t),△PRS的面積為S,導數S′,由S′=0得t=1,根據函數的單調性得到最值.【詳解】∵PQ∥y軸,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的導數f′(x)=tetx,∴過Q的切線斜率k=t,設R(r,0),則k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面積為S,導數S′,由S′=0得t=1,當t>1時,S′>0,當0<t<1時,S′<0,∴t=1為極小值點,也為最小值點,∴△PRS的面積的最小值為.故答案為:.【點睛】本題考查了利用導數求面積的最值問題,意在考查學生的計算能力和應用能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)或(2)【解析】

(1)分類討論去絕對值即可;(2)根據條件分a<﹣3和a≥﹣3兩種情況,由[﹣2,1]?A建立關于a的不等式,然后求出a的取值范圍.【詳解】(1)當a=﹣1時,f(x)=|x+1|.∵f(x)≤|2x+1|﹣1,∴當x≤﹣1時,原不等式可化為﹣x﹣1≤﹣2x﹣2,∴x≤﹣1;當時,原不等式可化為x+1≤﹣2x﹣2,∴x≤﹣1,此時不等式無解;當時,原不等式可化為x+1≤2x,∴x≥1,綜上,原不等式的解集為{x|x≤﹣1或x≥1}.(2)當a<﹣3時,,∴函數g(x)的值域A={x|3+a≤x≤﹣a﹣3}.∵[﹣2,1]?A,∴,∴a≤﹣5;當a≥﹣3時,,∴函數g(x)的值域A={x|﹣a﹣3≤x≤3+a}.∵[﹣2,1]?A,∴,∴a≥﹣1,綜上,a的取值范圍為(﹣∞,﹣5]∪[﹣1,+∞).【點睛】本題考查了絕對值不等式的解法和利用集合間的關于求參數的取值范圍,考查了轉化思想和分類討論思想,屬于中檔題.18.(1)證明見解析;(2).【解析】

(1)連接,連接、交于點,并連接,則點為的中點,利用中位線的性質得出,,利用空間平行線的傳遞性可得出,然后利用線面平行的判定定理可證得結論;(2)推導出平面,并計算出,由此可得出到平面的距離為,即可得解.【詳解】(1)連接,連接、交于點,并連接,則點為的中點,、分別為、的中點,則,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影為,平面,平面,,為正三角形,且為的中點,,,平面,且,因此,到平面的距離為.【點睛】本題考查線面平行的證明,同時也考查了點到平面距離的計算,考查推理能力與計算能力,屬于中等題.19.(1).(2).【解析】

(1)以A為原點,AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標系,則(﹣1,0,2),(﹣2,﹣1,1),計算夾角得到答案.(2)設,0≤λ≤1,計算P(0,2λ,2﹣2λ),計算平面APC的法向量(1,﹣1,),平面ADF的法向量(1,0,0),根據夾角公式計算得到答案.【詳解】(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又四邊形ABCD為矩形,∴以A為原點,AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標系,∵AD=2,AB=AF=2EF=2,P是DF的中點,∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(﹣1,0,2),(﹣2,﹣1,1),設異面直線BE與CP所成角的平面角為θ,則cosθ,∴異面直線BE與CP所成角的余弦值為.(2)A(0,0,0),C(2,2,0),F(0,0,2),D(0,2,0),設P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),(0,2λ,2﹣2λ),(2,2,0),設平面APC的法向量(x,y,z),則,取x=1,得(1,﹣1,),平面ADP的法向量(1,0,0),∵二面角D﹣AP﹣C的正弦值為,∴|cos|,解得,∴P(0,,),∴PF的長度|PF|.【點睛】本題考查了異面直線夾角,根據二面角求長度,意在考查學生的空間想象能力和計算能力.20.(1)(2)證明見解析【解析】

(1)在上有解,,設,求導根據函數的單調性得到最值,得到答案.(2)證明,只需證,記,求導得到函數的單調性,得到函數的最小值,得到證明.【詳解】(1)由題可得,在上有解,則,令,/

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論