2022年陜西省西安西工大附中數(shù)學九年級上冊期末調研試題含解析_第1頁
2022年陜西省西安西工大附中數(shù)學九年級上冊期末調研試題含解析_第2頁
2022年陜西省西安西工大附中數(shù)學九年級上冊期末調研試題含解析_第3頁
2022年陜西省西安西工大附中數(shù)學九年級上冊期末調研試題含解析_第4頁
2022年陜西省西安西工大附中數(shù)學九年級上冊期末調研試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.下列調查中,適合采用全面調查(普查)方式的是()A.了解重慶市中小學學生課外閱讀情況B.了解重慶市空氣質量情況C.了解重慶市市民收看重慶新聞的情況D.了解某班全體同學九年級上期第一次月考數(shù)學成績得分的情況2.如圖,電路圖上有四個開關A、B、C、D和一個小燈泡,則任意閉合其中兩個開關,小燈泡發(fā)光的概率是()A. B. C. D.3.如圖,在△ABC中,D、E分別為AB、AC邊上的點,DE∥BC,BE與CD相交于點F,則下列結論一定正確的是()A. B. C. D.4.把拋物線y=(x﹣1)2+2沿x軸向右平移2個單位后,再沿y軸向下平移3個單位,得到的拋物線解析式為()A.y=(x﹣3)2+1 B.y=(x+1)2﹣1 C.y=(x﹣3)2﹣1 D.y=(x+1)2﹣25.一元二次方程x2-8x-1=0配方后可變形為()A.(x+4)2=17 B.(x+4)2=15 C.(x-4)2=17 D.(x-4)2=156.在同一坐標系中,一次函數(shù)與二次函數(shù)的圖象可能是().A. B. C. D.7.已知Rt△ABC中,∠C=900,AC=2,BC=3,則下列各式中,正確的是()A.; B.; C.; D.以上都不對;8.如圖,是的弦,半徑于點且則的長為().A. B. C. D.9.如圖,是的直徑,點是延長線上一點,是的切線,點是切點,,若半徑為,則圖中陰影部分的面積為()A. B. C. D.10.一副三角尺按如圖的位置擺放(頂點C與F重合,邊CA與邊FE重合,頂點B、C、D在一條直線上).將三角尺DEF繞著點F按逆時針方向旋轉n°后(0<n<180),如果BA∥DE,那么n的值是()A.105 B.95 C.90 D.7511.一組數(shù)據(jù)-3,2,2,0,2,1的眾數(shù)是()A.-3 B.2 C.0 D.112.關于二次函數(shù),下列說法正確的是()A.圖像與軸的交點坐標為 B.圖像的對稱軸在軸的右側C.當時,的值隨值的增大而減小 D.的最小值為-3二、填空題(每題4分,共24分)13.在平面直角坐標系中,點與點關于原點對稱,則__________.14.將拋物線先向右平移1個單位長度,再向上平移2個單位長度,得到的拋物線的解析式是______.15.在一次摸球實驗中,摸球箱內放有白色、黃色乒乓球共50個,這兩種乒乓球的大小、材質都相同.小明發(fā)現(xiàn),摸到白色乒乓球的頻率穩(wěn)定在60%左右,則箱內黃色乒乓球的個數(shù)很可能是________.16.若二次函數(shù)的圖象與x軸交于A,B兩點,則的值為______.17.如圖,將半徑為2,圓心角為90°的扇形BAC繞點A逆時針旋轉60°,點B、C的對應點分別為D、E,點D在上,則陰影部分的面積為_____.18.已知,如圖,,,且,則與__________是位似圖形,位似比為____________.三、解答題(共78分)19.(8分)如圖,某數(shù)學興趣小組為測量一棵古樹BH和教學樓的高,先在點處用高1.5米的測角儀測得古樹頂端點的仰角為,此時教學樓頂端點恰好在視線上,再向前走7米到達點處,又測得教學樓頂端點的仰角為,點、、點在同一水平線上.(1)計算古樹的高度;(2)計算教學樓的高度.(結果精確到0.1米,參考數(shù)據(jù):,).20.(8分)已知,如圖1,在中,,,,若為的中點,交與點.(1)求的長.(2)如圖2,點為射線上一動點,連接,線段繞點順時針旋轉交直線與點.①若時,求的長:②如圖3,連接交直線與點,當為等腰三角形時,求的長.21.(8分)如圖1,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0)、C(3,0),點B為拋物線頂點,直線BD為拋物線的對稱軸,點D在x軸上,連接AB、BC,∠ABC=90°,AB與y軸交于點E,連接CE.(1)求項點B的坐標并求出這條拋物線的解析式;(2)點P為第一象限拋物線上一個動點,設△PEC的面積為S,點P的橫坐標為m,求S關于m的函數(shù)關系武,并求出S的最大值;(3)如圖2,連接OB,拋物線上是否存在點Q,使直線QC與直線BC所夾銳角等于∠OBD,若存在請直接寫出點Q的坐標;若不存在,說明理由.22.(10分)如圖,是的直徑,弦于點,是上一點,,的延長線交于點.(1)求證:.(2)當平分,,,求弦的長.23.(10分)如圖1是實驗室中的一種擺動裝置,在地面上,支架是底邊為的等腰直角三角形,擺動臂長可繞點旋轉,擺動臂可繞點旋轉,,.(1)在旋轉過程中:①當三點在同一直線上時,求的長;②當三點在同一直角三角形的頂點時,求的長.(2)若擺動臂順時針旋轉,點的位置由外的點轉到其內的點處,連結,如圖2,此時,,求的長.24.(10分)如圖,已知AB是⊙O的直徑,點C在⊙O上,點P是AB延長線上一點,∠BCP=∠A.(1)求證:直線PC是⊙O的切線;(2)若CA=CP,⊙O的半徑為2,求CP的長.25.(12分)如圖,△BAD是由△BEC在平面內繞點B旋轉60°而得,且AB⊥BC,BE=CE,連接DE.(1)求證:△BDE≌△BCE;(2)試判斷四邊形ABED的形狀,并說明理由.26.在菱形中,,延長至點,延長至點,使,連結,,延長交于點.(1)求證:;(2)求的度數(shù).

參考答案一、選擇題(每題4分,共48分)1、D【解析】調查方式的選擇需要將普查的局限性和抽樣調查的必要性結合起來,具體問題具體分析,普查結果準確,所以在要求精確、難度相對不大,實驗無破壞性的情況下應選擇普查方式,當考查的對象很多或考查會給被調查對象帶來損傷破壞,以及考查經費和時間都非常有限時,普查就受到限制,這時就應選擇抽樣調查.【詳解】解:A、了解重慶市中小學學生課外閱讀情況,由于范圍較大,適合用抽樣調查;故此選項錯誤;B、了解重慶市空氣質量情況,適合抽樣調查,故此選項錯誤;C、了解重慶市市民收看重慶新聞的情況,由于范圍較大,適合用抽樣調查;故此選項錯誤;D、了解某班全體同學九年級上期第一次月考數(shù)學成績得分的情況,范圍較小,采用全面調查;故此選項正確;故選:D.【點睛】此題主要考查了適合普查的方式,一般有以下幾種:①范圍較??;②容易掌控;③不具有破壞性;④可操作性較強.基于以上各點,“了解全班同學本周末參加社區(qū)活動的時間”適合普查,其它幾項都不符合以上特點,不適合普查.2、A【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與小燈泡發(fā)光的情況,再利用概率公式即可求得答案.【詳解】解:畫樹狀圖得:∵共有12種等可能的結果,現(xiàn)任意閉合其中兩個開關,則小燈泡發(fā)光的有6種情況,∴小燈泡發(fā)光的概率為=.故選:A.【點睛】此題考查了列表法或樹狀圖法求概率.用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.3、A【分析】根據(jù)平行線分線段成比例定理與相似三角形的性質,逐項判斷即得答案.【詳解】解:A、∵DE∥BC,∴,故本選項正確;B、∵DE∥BC,∴△DEF∽△CBF,∴,故本選項錯誤;C、∵DE∥BC,∴△ADE∽△ABC,∴,故本選項錯誤;D、∵DE∥BC,∴△DEF∽△CBF,∴,故本選項錯誤.故選:A.【點睛】本題考查了平行線分線段成比例定理和相似三角形的判定和性質,屬于基礎題型,熟練掌握相似三角形的判定和性質是解答的關鍵.4、C【分析】直接根據(jù)“上加下減,左加右減”的原則進行解答.【詳解】把拋物線y=(x﹣1)2+2沿x軸向右平移2個單位后,再沿y軸向下平移3個單位,得到的拋物線解析式為y=(x﹣1﹣2)2+2﹣3,即y=(x﹣3)2﹣1.故選:C.【點睛】本題考查的是二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關鍵.5、C【分析】常數(shù)項移到方程的右邊,再在兩邊配上一次項系數(shù)一半的平方,寫成完全平方式即可得.【詳解】解:∵,∴,即,故選:C.【點睛】本題主要考查配方法解一元二次方程,熟練掌握配方法解方程的步驟和完全平方公式是解題的關鍵.6、D【解析】試題分析:A.由直線與y軸的交點在y軸的負半軸上可知,<0,錯誤;B.由拋物線與y軸的交點在y軸的正半軸上可知,m>0,由直線可知,﹣m>0,錯誤;C.由拋物線y軸的交點在y軸的負半軸上可知,m<0,由直線可知,﹣m<0,錯誤;D.由拋物線y軸的交點在y軸的負半軸上可知,m<0,由直線可知,﹣m>0,正確,故選D.考點:1.二次函數(shù)的圖象;2.一次函數(shù)的圖象.7、C【分析】根據(jù)勾股定理求出AB,根據(jù)銳角三角函數(shù)的定義求出各個三角函數(shù)值,即可得出答案.【詳解】如圖:

由勾股定理得:AB=,

所以cosB=,sinB=,所以只有選項C正確;

故選:C.【點睛】此題考查銳角三角函數(shù)的定義的應用,能熟記銳角三角函數(shù)的定義是解此題的關鍵.8、D【解析】連接OA,∵OC⊥AB,AB=6則AD=3且OA2=OD2+AD2,∴OA2=16+9,∴OA=OC=5cm.∴DC=OC-OD=1cm故選D.9、B【分析】連接OC,求出∠COD和∠D,求出邊DC長,分別求出三角形OCD的面積和扇形COB的面積,即可求出答案.【詳解】連接OC,

∵AO=CO,∠CAB=30°,

∴∠COD=2∠CAB=60°,

∵DC切⊙O于C,

∴OC⊥CD,

∴∠OCD=90°,

∴∠D=90°-∠COD=90°-60°=30°,

在Rt△OCD中,∠OCD=90°,∠D=30°,OC=4,∴,∴陰影部分的面積是:故選:B.【點睛】本題考查了扇形的面積,三角形的面積的應用,還考查了等腰三角形性質,三角形的內角和定理,切線的性質,解此題的關鍵是求出扇形和三角形的面積.10、A【分析】畫出圖形求解即可.【詳解】解:∵三角尺DEF繞著點F按逆時針方向旋轉n°后(0<n<180),BA∥DE,∴旋轉角=90°+45°﹣30°=105°,故選:A.【點睛】本題考查了旋轉變換,平行線的性質等知識,解題的關鍵是學會用分類討論的思想思考問題,屬于中考??碱}型.11、B【解析】一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)是眾數(shù),根據(jù)眾數(shù)的定義進行求解即可得.【詳解】數(shù)據(jù)-3,2,2,0,2,1中,2出現(xiàn)了3次,出現(xiàn)次數(shù)最多,其余的都出現(xiàn)了1次,所以這組數(shù)據(jù)的眾數(shù)是2,故選B.【點睛】本題考查了眾數(shù)的定義,熟練掌握眾數(shù)的定義是解題的關鍵.12、D【解析】分析:根據(jù)題目中的函數(shù)解析式可以判斷各個選項中的結論是否成立,從而可以解答本題.詳解:∵y=2x2+4x-1=2(x+1)2-3,∴當x=0時,y=-1,故選項A錯誤,該函數(shù)的對稱軸是直線x=-1,故選項B錯誤,當x<-1時,y隨x的增大而減小,故選項C錯誤,當x=-1時,y取得最小值,此時y=-3,故選項D正確,故選D.點睛:本題考查二次函數(shù)的性質、二次函數(shù)的最值,解答本題的關鍵是明確題意,利用二次函數(shù)的性質解答.二、填空題(每題4分,共24分)13、1【分析】根據(jù)在平面直角坐標系中的點關于原點對稱的點的坐標為,進而求解.【詳解】∵點與點關于原點對稱,∴,故答案為:1.【點睛】本題考查平面直角坐標系中關于原點對稱點的特征,即兩個點關于原點對稱時,它們的坐標符號相反.14、【分析】先確定拋物線y=x1的頂點坐標為(0,0),再利用點平移的規(guī)律得到點(0,0)平移所得對應點的坐標為(1,1),然后根據(jù)頂點式寫出新拋物線解析式.【詳解】解:拋物線y=x1的頂點坐標為(0,0),點(0,0)先向右平移1個單位長度,再向上平移1個單位長度所得對應點的坐標為(1,1),所以新拋物線的解析式為y=(x-1)1+1故答案為y=(x-1)1+1.【點睛】本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.15、20【解析】先設出白球的個數(shù),根據(jù)白球的頻率求出白球的個數(shù),再用總的個數(shù)減去白球的個數(shù)即可.【詳解】設黃球的個數(shù)為x個,∵共有黃色、白色的乒乓球50個,黃球的頻率穩(wěn)定在60%,∴=60%,解得x=30,∴布袋中白色球的個數(shù)很可能是50-30=20(個).故答案為:20.【點睛】本題考查了利用頻率估計概率,熟練掌握該知識點是本題解題的關鍵.16、﹣4【解析】與x軸的交點的家橫坐標就是求y=0時根,再根據(jù)求根公式或根與系數(shù)的關系,求出兩根之和與兩根之積。把要求的式子通分代入即可?!驹斀狻吭Oy=0,則,∴一元二次方程的解分別是點A和點B的橫坐標,即,,∴,∴,故答案為:.【點睛】根據(jù)求根公式可得,若,是方程的兩個實數(shù)根,則17、【分析】直接利用旋轉的性質結合扇形面積求法以及等邊三角形的判定與性質得出S陰影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD,進而得出答案.【詳解】連接BD,過點B作BN⊥AD于點N,∵將半徑為2,圓心角為90°的扇形BAC繞A點逆時針旋轉60°,∴∠BAD=60°,AB=AD,∴△ABD是等邊三角形,∴∠ABD=60°,則∠ABN=30°,故AN=1,BN=,S陰影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD==π﹣=.故答案為.【點睛】考查了扇形面積求法以及等邊三角形的判定與性質,正確得出△ABD是等邊三角形是解題關鍵.18、7:1【分析】由平行易得△ABC∽△A′B′C′,且兩三角形位似,位似比等于OA′:OA.【詳解】解:∵A′B′∥AB,B′C′∥BC,

∴△ABC∽△A′B′C′,,,∠A′B′O=∠ABO,∠C′B′O=∠CBO,,∠A′B′C′=∠ABC,

∴△ABC∽△A′B′C′,∴△ABC與△A′B′C′是位似圖形,

位似比=AB:A′B′=OA:OA′=(1+3):1=7:1.【點睛】本題考查了相似圖形交于一點的圖形的位似圖形,位似比等于對應邊的比.三、解答題(共78分)19、(1)8.5米;(2)18.0米【分析】(1)先根據(jù)題意得出DE=AB=7米,AD=BE=1.5米,在Rt△DEH中,可求出HE的長度,進而可計算古樹的高度;(2)作HJ⊥CG于G,設HJ=GJ=BC=x,在Rt△EFG中,利用特殊角的三角函數(shù)值求出x的值,進而求出GF,最后利用CG=CF+FG即可得出答案.【詳解】解:(1)由題意:四邊形ABED是矩形,可得DE=AB=7米,AD=BE=1.5米,在Rt△DEH中,∵∠EDH=45°,∴HE=DE=7米.∴BH=EH+BE=8.5米.答:古樹BH的高度為8.5米.(2)作HJ⊥CG于G.則△HJG是等腰直角三角形,四邊形BCJH是矩形,設HJ=GJ=BC=x.在Rt△EFG中,tan60°=,∴,∴GF=≈16.45∴CG=CF+FG=1.5+16.45≈17.95≈18.0米.答:教學樓CG的高度為18.0米.【點睛】本題主要考查解直角三角形,能夠數(shù)形結合,構造出直角三角形是解題的關鍵.20、(1);(2)①,;②,.【分析】(1)先利用相似三角形性質求得∽,并利用相似比即可求的長;(2)①由題意分點在線段上,點在射線上,利用相似三角形性質進行分析求值;②利用三角函數(shù)以及等腰三角形性質綜合進行分析討論.【詳解】解:(1)∵,,∴∽∴∵,∴∴(2)①()點在線段上∵,∴為的中點∵為的中點∴∵,∴∴是的中位線∴()點在射線上∵為的中點,∴由(1)可得∽∴,∴∵,∴∴∽∴∴綜上所述:的長為,②由上問可得,∽∴∵∴∵,∴∴∽為等腰三角形,則為等腰三角形.()時在延長線上,不符合題意,舍去()(),則點與點重合綜上所述:的長為,【點睛】本題考查幾何圖形的綜合問題,熟練利用相似三角形相關性質以及結合等腰三角形和三角函數(shù)進行分析討論.21、(1)點B坐標為(1,2),y=﹣x2+x+;(2)S=﹣m2+2m+,S最大值;(3)點Q的坐標為(﹣,).【分析】(1)先求出拋物線的對稱軸,證△ABC是等腰直角三角形,由三線合一定理及直角三角形的性質可求出BD的長,即可寫出點B的坐標,由待定系數(shù)法可求出拋物線解析式;(2)求出直線AB的解析式,點E的坐標,用含m的代數(shù)式表示出點P的坐標,如圖1,連接EP,OP,CP,則由S△EPC=S△OEP+S△OCP﹣S△OCE即可求出S關于m的函數(shù)關系式,并可根據(jù)二次函數(shù)的性質寫出S的最大值;(3)先證△ODB∽△EBC,推出∠OBD=∠ECB,延長CE,交拋物線于點Q,則此時直線QC與直線BC所夾銳角等于∠OBD,求出直線CE的解析式,求出其與拋物線交點的坐標,即為點Q的坐標.【詳解】解:(1)∵A(﹣1,0)、C(3,0),∴AC=4,拋物線對稱軸為x==1,∵BD是拋物線的對稱軸,∴D(1,0),∵由拋物線的對稱性可知BD垂直平分AC,∴BA=BC,又∵∠ABC=90°,∴BD=AC=2,∴頂點B坐標為(1,2),設拋物線的解析式為y=a(x﹣1)2+2,將A(﹣1,0)代入,得0=4a+2,解得,a=﹣,∴拋物線的解析式為:y=﹣(x﹣1)2+2=﹣x2+x+;(2)設直線AB的解析式為y=kx+b,將A(﹣1,0),B(1,2)代入,得,解得,k=1,b=1,∴yAB=x+1,當x=0時,y=1,∴E(0,1),∵點P的橫坐標為m,∴點P的縱坐標為﹣m2+m+,如圖1,連接EP,OP,CP,則S△EPC=S△OEP+S△OCP﹣S△OCE=×1×m+×3(﹣m2+m+)﹣×1×3=﹣m2+2m+,=﹣(m﹣)2+,∵﹣<0,根據(jù)二次函數(shù)和圖象及性質知,當m=時,S有最大值;(3)由(2)知E(0,1),又∵A(﹣1,0),∴OA=OE=1,∴△OAE是等腰直角三角形,∴AE=OA=,又∵AB=BC=AB=2,∴BE=AB﹣AE=,∴,又∵,∴,又∵∠ODB=∠EBC=90°,∴△ODB∽△EBC,∴∠OBD=∠ECB,延長CE,交拋物線于點Q,則此時直線QC與直線BC所夾銳角等于∠OBD,設直線CE的解析式為y=mx+1,將點C(3,0)代入,得,3m+1=0,∴m=﹣,∴yCE=﹣x+1,聯(lián)立,解得,或,∴點Q的坐標為(﹣,).【點睛】本題是一道關于二次函數(shù)的綜合題目,巧妙利用二次函數(shù)的性質是解題的關鍵,根據(jù)已知條件可得出拋物線的解析式是解題的基礎,難點是利用數(shù)形結合作出合理的輔助線.22、(1)證明見解析;(2)2【分析】(1)根據(jù)垂徑定理可得,即,再根據(jù)圓內接四邊形的性質即可得證;(2)連接OG,BG,OD,根據(jù)等腰直角三角形的性質可得,利用垂徑定理和解直角三角形可得,在中應用勾股定理即可求解.【詳解】解:(1)弦,,,四邊形是圓內接四邊形,,;(2)連接OG,BG,OD,,∵,∴,∵,∴,∵,∴,在中,,,∴,∵平分,,∴,∵AB是直徑,∴,∴,∴,∴,在中,,即,解得或(舍),∴.【點睛】本題考查垂徑定理、圓內接四邊形的性質、勾股定理、等腰直角三角形的性質、解直角三角形等內容,作出輔助線是解題的關鍵.23、(1)①,或;②或;(2).【分析】(1)①分兩種情形分別求解即可.②顯然∠MAD不能為直角.當∠AMD為直角時,根據(jù)AM2=AD2-DM2,計算即可,當∠ADM=90°時,根據(jù)AM2=AD2+DM2,計算即可.(2)連接CD.首先利用勾股定理求出CD1,再利用全等三角形的性質證明BD2=CD1即可.【詳解】(1)①,或.②顯然不能為直角,當為直角時,,∴.當為直角時,,∴.(2)連結,由題意得,,∴,,又∵,∴,∴.∵,∴,即.又∵,,∴,∴.【點睛】本題屬于四邊形綜合題,考查了等腰直角三角形的性質,勾股定理,全等三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題.24、(1)見解析;(2)2【分析】(1)欲證明PC是⊙O的切線,只要證明OC⊥PC即可;(2)想辦法證明∠P=30°即可解決問題.【詳解】(1)∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直徑,∴∠ACO+/r

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論