2023屆固原市重點中學(xué)數(shù)學(xué)九年級上冊期末預(yù)測試題含解析_第1頁
2023屆固原市重點中學(xué)數(shù)學(xué)九年級上冊期末預(yù)測試題含解析_第2頁
2023屆固原市重點中學(xué)數(shù)學(xué)九年級上冊期末預(yù)測試題含解析_第3頁
2023屆固原市重點中學(xué)數(shù)學(xué)九年級上冊期末預(yù)測試題含解析_第4頁
2023屆固原市重點中學(xué)數(shù)學(xué)九年級上冊期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,在菱形中,,,為中點,是上一點,為上一點,且,,交于點,關(guān)于下列結(jié)論,正確序號的選項是()①,②,③④A.①② B.①②③ C.①②④ D.①③④2.方程的根是()A. B. C., D.,3.如圖,在平面直角坐標(biāo)系中,梯形OACB的頂點O是坐標(biāo)原點,OA邊在y軸正半軸上,OB邊在x軸正半軸上,且OA∥BC,雙曲線y=(x>0)經(jīng)過AC邊的中點,若S梯形OACB=4,則雙曲線y=的k值為()A.5 B.4 C.3 D.24.某企業(yè)五月份的利潤是25萬元,預(yù)計七月份的利潤將達(dá)到49萬元.設(shè)平均月增長率為x,根據(jù)題意可列方程是()A.25(1+x%)2=49 B.25(1+x)2=49C.25(1+x2)=49 D.25(1-x)2=495.如圖,這個幾何體的左視圖是()A. B. C. D.6.現(xiàn)有四張分別標(biāo)有數(shù)字﹣2,﹣1,1,3的卡片,它們除數(shù)字外完全相同,把卡片背面朝上洗勻,從中隨機抽取一張卡片,記下數(shù)字后放回,洗勻,再隨機抽取一張卡片,則第一次抽取的卡片上的數(shù)字大于第二次抽取的卡片上的數(shù)字的概率是()A. B. C. D.7.甲、乙、丙三人站成一排拍照,則甲站在中間的概率是()A.16 B.13 C.18.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲.如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形.設(shè)直角三角形較長直角邊長為a,較短直角邊長為b.若ab=8,大正方形的面積為25,則小正方形的邊長為A.9 B.6 C.4 D.39.拋物線可以由拋物線平移得到,下列平移正確的是()A.先向左平移3個單位長度,然后向上平移1個單位B.先向左平移3個單位長度,然后向下平移1個單位C.先向右平移3個單位長度,然后向上平移1個單位D.先向右平移3個單位長度,然后向下平移1個單位10.下列命題中,真命題是()A.對角線相等的四邊形是矩形B.對角線互相垂直的四邊形是菱形C.對角線互相平分的四邊形不一定是平行四邊形D.對角線互相垂直平分且相等的四邊形一定是正方形二、填空題(每小題3分,共24分)11.如圖,是以點為位似中心經(jīng)過位似變換得到的,若,則的周長與的周長比是__________.12.如圖,四邊形的項點都在坐標(biāo)軸上,若與面積分別為和,若雙曲線恰好經(jīng)過的中點,則的值為__________.13.計算若,那么a2019+b2020=____________.14.如圖,正方形的邊長為8,點在上,交于點.若,則長為__.15.如圖,在?ABCD中,AB=6,BC=6,∠D=30°,點E是AB邊的中點,點F是BC邊上一動點,將△BEF移沿直線EF折疊,得到△GEF,當(dāng)FG∥AC時,BF的長為_____.16.若m是方程2x2﹣3x=1的一個根,則6m2﹣9m的值為_____.17.如圖,四邊形是菱形,,對角線,相交于點,于,連接,則=_________度.18.點M(3,)與點N()關(guān)于原點對稱,則________.三、解答題(共66分)19.(10分)如圖,△ABC中,∠A=30°,∠B=45°,AC=4,求AB的長.20.(6分)計算:|-2|+2﹣1﹣cos61°﹣(1﹣)1.21.(6分)如圖,點O為Rt△ABC斜邊AB上的一點,以O(shè)A為半徑的⊙O與邊BC交于點D,與邊AC交于點E,連接AD,且AD平分∠BAC.(1)試判斷BC與⊙O的位置關(guān)系,并說明理由;(2)若∠BAC=60°,OA=2,求陰影部分的面積(結(jié)果保留π).22.(8分)在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AD=8,DB=2,求CD的長23.(8分)在中,是邊上的中線,點在射線上,過點作交的延長線于點.(1)如圖1,點在邊上,與交于點證明:;(2)如圖2,點在的延長線上,與交于點.①求的值;②若,求的值24.(8分)動畫片《小豬佩奇》分靡全球,受到孩子們的喜愛.現(xiàn)有4張《小豬佩奇》角色卡片,分別是A佩奇,B喬治,C佩奇媽媽,D佩奇爸爸(四張卡片除字母和內(nèi)容外,其余完全相同).姐弟兩人做游戲,他們將這四張卡片混在一起,背面朝上放好.(1)姐姐從中隨機抽取一張卡片,恰好抽到A佩奇的概率為;(2)若兩人分別隨機抽取一張卡片(不放回),請用列表或畫樹狀圖的分方法求出恰好姐姐抽到A佩奇弟弟抽到B喬治的概率.25.(10分)學(xué)校準(zhǔn)備建一個矩形花圃,其中一邊靠墻,另外三邊用周長為30米的籬笆圍成.已知墻長為18米,設(shè)花圃垂直于墻的一邊長為x米,花圃的面積為y平方米.(1)求出y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;(2)當(dāng)x為何值時,y有最大值?最大值是多少?26.(10分)如圖①,四邊形是邊長為2的正方形,,四邊形是邊長為的正方形,點分別在邊上,此時,成立.(1)當(dāng)正方形繞點逆時針旋轉(zhuǎn),如圖②,成立嗎?若成立,請證明;若不成立,請說明理由;(2)當(dāng)正方形繞點逆時針旋轉(zhuǎn)(任意角)時,仍成立嗎?直接回答;(3)連接,當(dāng)正方形繞點逆時針旋轉(zhuǎn)時,是否存在∥,若存在,請求出的值;若不存在,請說明理由.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】依據(jù),,即可得到;依據(jù),即可得出;過作于,依據(jù),根據(jù)相似三角形的性質(zhì)得到;依據(jù),,可得,進而得到.【詳解】解:∵菱形中,,.∴,,∴,故①正確;∴,又∵,為中點,,∴,即,又∵,∴∵,∴,∴,∴,故②正確;如圖,過作于,則,∴,,,∴中,,又∵,∴,故③正確;∵,,,,∴,,∴,∴,故④錯誤;故選:B.【點睛】此題考查相似三角形的判定與性質(zhì)、菱形的性質(zhì)、等邊三角形的性質(zhì)的綜合運用.解題關(guān)鍵在于掌握判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用.2、D【分析】先移項然后通過因式分解法解一元二次方程即可.【詳解】或故選:D.【點睛】本題主要考查因式分解法解一元二次方程,掌握因式分解法是解題的關(guān)鍵.3、D【分析】過的中點作軸交軸于,交于,作軸于,如圖,先根據(jù)“”證明,則,得到,再利用得到,然后根據(jù)反比例函數(shù)系數(shù)的幾何意義得,再去絕對值即可得到滿足條件的的值.【詳解】過的中點作軸交軸于,交于,作軸于,如圖,在和中,,(),,,,,,而,.故選:.【點睛】本題考查了反比例函數(shù)系數(shù)的幾何意義:從反比例函數(shù)圖象上任意一點向軸于軸作垂線,垂線與坐標(biāo)軸所圍成的矩形面積為.4、B【分析】主要考查增長率問題,一般用增長后的量=增長前的量×(1+增長率),如果設(shè)利潤的年平均增長率為x,然后根據(jù)已知條件可得出方程.【詳解】解:依題意得七月份的利潤為25(1+x)2,

∴25(1+x)2=1.

故選:B.【點睛】本題考查了一元二次方程的應(yīng)用,找到關(guān)鍵描述語,就能找到等量關(guān)系,是解決問題的關(guān)鍵.同時要注意增長率問題的一般規(guī)律.5、B【解析】根據(jù)三視圖概念即可解題.【詳解】解:因為物體的左側(cè)高,所以會將右側(cè)圖形完全遮擋,看不見的直線要用虛線代替,故選B.【點睛】本題考查了三視圖的識別,屬于簡單題,熟悉三視圖的概念是解題關(guān)鍵.6、B【分析】畫樹狀圖得出所有等可能結(jié)果,從找找到符合條件得結(jié)果數(shù),在根據(jù)概率公式計算可得.【詳解】畫樹狀圖如下:由樹狀圖知共有16種等可能結(jié)果,其中第一次抽取的卡片上的數(shù)字大于第二次抽取的卡片上的數(shù)字的有6種結(jié)果,所以第一次抽取的卡片上的數(shù)字大于第二次抽取的卡片上的數(shù)字的概率為.故選B.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.7、B【解析】試題分析:畫樹狀圖為:共有6種等可能的結(jié)果數(shù),其中甲站在中間的結(jié)果數(shù)為2,所以甲站在中間的概率=26=1考點:列表法與樹狀圖法.8、D【分析】已知ab=8可求出四個三角形的面積,用大正方形面積減去四個三角形的面積得到小正方形的面積,根據(jù)面積利用算術(shù)平方根求小正方形的邊長.【詳解】故選D.【點睛】本題考查勾股定理的推導(dǎo),有較多變形題,解題的關(guān)鍵是找出圖形間面積關(guān)系,同時熟練運用勾股定理以及完全平方公式,本題屬于基礎(chǔ)題型.9、B【分析】拋物線平移問題可以以平移前后兩個解析式的頂點坐標(biāo)為基準(zhǔn)研究.【詳解】解:拋物線的頂點為(0,0),拋物線的頂點為(-3,-1),拋物線向左平移3個單位長度,然后向下平移1個單位得到拋物線.故選:B.【點睛】本題考查的知識點是二次函數(shù)圖象平移問題,解答是最簡單的方法是確定平移前后拋物線頂點,從而確定平移方向.10、D【分析】根據(jù)矩形的判定、菱形的判定、平行四邊形和正方形的判定判斷即可.【詳解】解:A、對角線相等的平行四邊形是矩形,原命題是假命題;B、對角線互相垂直的平行四邊形是菱形,原命題是假命題;C、對角線互相平分的四邊形一定是平行四邊形,原命題是假命題;D、對角線互相垂直平分且相等的四邊形一定是正方形,原命題是真命題;故選:D.【點睛】此題主要考查了命題與定理,正確把握特殊四邊形的判定方法是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、2:1【分析】根據(jù)位似三角形的性質(zhì),可得出兩個三角形的周長比等于位似比等于邊長比求解即可.【詳解】解:由題意可得出,∵的周長與的周長比=故答案為:2:1.【點睛】本題考查的知識點是位似變化,根據(jù)題目找出兩個圖形的位似比是解此題的關(guān)鍵.12、6【分析】根據(jù)AB//CD,得出△AOB與△OCD相似,利用△AOB與△OCD的面積分別為8和18,得:AO:OC=BO:OD=2:3,然后再利用同高三角形求得S△COB=12,設(shè)B、C的坐標(biāo)分別為(a,0)、(0,b),E點坐標(biāo)為(a,b)進行解答即可.【詳解】解:∵AB//CD,∴△AOB∽△OCD,又∵△ABD與△ACD的面積分別為8和18,∴△ABD與△ACD的面積比為4:9,∴AO:OC=BO:OD=2:3∵S△AOB=8∴S△COB=12設(shè)B、C的坐標(biāo)分別為(a,0)、(0,b),E點坐標(biāo)為(a,b)則OB=|a|、OC=|b|∴|a|×|b|=12即|a|×|b|=24∴|a|×|b|=6又∵,點E在第三象限∴k=xy=a×b=6故答案為6.【點睛】本題考查了反比例函數(shù)綜合題應(yīng)用,根據(jù)已知求出S△COB=12是解答本題的關(guān)鍵.13、0【分析】根據(jù)二次根式和絕對值的非負(fù)數(shù)性質(zhì)可求出a、b的值,進而可得答案.【詳解】∵,∴(a+1)2=0,b-1=0,解得:a=-1,b=1,∴a2019+b2020=-1+1=0,故答案為:0【點睛】本題考查二次根式和絕對值的非負(fù)數(shù)性質(zhì),如果幾個非負(fù)數(shù)的和為0,那么這幾個非負(fù)數(shù)分別為0;熟練掌握非負(fù)數(shù)性質(zhì)是解題關(guān)鍵.14、6【分析】根據(jù)正方形的性質(zhì)可得OC∥AB,OB=,從而證出△COQ∽△PBQ,然后根據(jù)相似三角形的性質(zhì)即可求出,從而求出的長.【詳解】解:∵正方形的邊長為8,∴OC∥AB,OB=∴△COQ∽△PBQ∴∴∴故答案為:6.【點睛】此題考查的是正方形的性質(zhì)、相似三角形的判定及性質(zhì),掌握正方形的性質(zhì)、利用平行證相似和相似三角形的面積比等于相似比的平方是解決此題的關(guān)鍵.15、或【分析】由平行四邊形的性質(zhì)得出∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,則CH=CD=3,DH=CH=3=AD,得出AH=DH,由線段垂直平分線的性質(zhì)得出CA=CD=AB=6,由等腰三角形的性質(zhì)得出∠ACB=∠B=30°,由平行線的性質(zhì)得出∠BFG=∠ACB=30°,分兩種情況:①作EM⊥BF于M,在BF上截取EN=BE=3,則∠ENB=∠B=30°,由直角三角形的性質(zhì)得出EM=BE=,BM=NM=EM=,得出BN=2BM=3,再證出FN=EN=3,即可得出結(jié)果;②作EM⊥BC于M,在BC上截取EN=BE=3,連接EN,則∠ENB=∠B=30°,得出EN∥AC,EM=BE=,BM=NM=EM=,BN=2BM=3,證出FG∥EN,則∠G=∠GEN,證出∠GEN=∠ENB=∠B=∠G=30°,推出∠BEN=120°,得出∠BEG=120°﹣∠GEN=90°,由折疊的性質(zhì)得∠BEF=∠GEF=∠BEG=45°,證出∠NEF=∠NFE,則FN=EN=3,即可得出結(jié)果.【詳解】解:∵四邊形ABCD是平行四邊形,∴∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,則CH=CD=3,DH=CH=3=AD,∴AH=DH,∴CA=CD=AB=6,∴∠ACB=∠B=30°,∵FG∥AC,∴∠BFG=∠ACB=30°,∵點E是AB邊的中點,∴BE=3,分兩種情況:①作EM⊥BF于M,在BF上截取EN=BE=3,連接EN,如圖1所示:則∠ENB=∠B=30°,∴EM=BE=,BM=NM=EM=,∴BN=2BM=3,由折疊的性質(zhì)得:∠BFE=∠GFE=15°,∵∠NEF=∠ENB﹣∠BFE=15°=∠BFE,∴FN=EN=3,∴BF=BN+FN=3+3;②作EM⊥BC于M,在BC上截取EN=BE=3,連接EN,如圖2所示:則∠ENB=∠B=30°,∴EN∥AC,EM=BE=,BM=NM=EM=,∴BN=2BM=3,∵FG∥AC,∴FG∥EN,∴∠G=∠GEN,由折疊的性質(zhì)得:∠B=∠G=30°,∴∠GEN=∠ENB=∠B=∠G=30°,∵∠BEN=180°﹣∠B﹣∠ENB=180°﹣30°﹣30°=120°,∴∠BEG=120°﹣∠GEN=120°﹣30°=90°,由折疊的性質(zhì)得:∠BEF=∠GEF=∠BEG=45°,∴∠NEF=∠NEG+∠GEF=30°+45°=75°,∠NFE=∠BEF+∠B=45°+30°=75°,∴∠NEF=∠NFE,∴FN=EN=3,∴BF=BN﹣FN=3﹣3;故答案為:或.【點睛】本題考查了翻折變換的性質(zhì)、平行四邊形的性質(zhì)、直角三角形的性質(zhì)、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)等知識;掌握翻折變換的性質(zhì)和等腰三角形的性質(zhì)是解答本題的關(guān)鍵.16、1【分析】把m代入方程2x2﹣1x=1,得到2m2-1m=1,再把6m2-9m變形為1(2m2-1m),然后利用整體代入的方法計算.【詳解】解:∵m是方程2x2﹣1x=1的一個根,∴2m2﹣1m=1,∴6m2﹣9m=1(2m2﹣1m)=1×1=1.故答案為1.【點睛】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.17、25【解析】首先求出∠HDB的度數(shù),再利用直角三角形斜邊中線定理可得OH=OD,由此可得∠OHD=∠ODH即可解決問題.【詳解】∵四邊形ABCD是菱形,∴AC⊥BD,DO=OB,∠DAO=∠BAO=25°,∴∠ABO=90°?∠BAO=65°,∵DH⊥AB,∴∠DHB=90°,∴∠BDH=90°?ABO=25°,在Rt△DHB中,∵OD=OB,∴OH=OD=OB,∴∠DHO=∠HDB=25°,故答案為:25.【點睛】本題考查了菱形的性質(zhì),直角三角形斜邊中線定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.18、-6【分析】根據(jù)平面內(nèi)兩點關(guān)于關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù),列方程求解即可.【詳解】解:根據(jù)平面內(nèi)兩點關(guān)于關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù),∴b+3=0,a-1+4=0,即:a=﹣3且b=﹣3,∴a+b=﹣6【點睛】本題考查關(guān)于原點對稱的點的坐標(biāo),掌握坐標(biāo)變化規(guī)律是本題的解題關(guān)鍵.三、解答題(共66分)19、1+1【解析】試題分析:本題注意考查的就是利用三角函數(shù)解直角三角形,過點C作CD⊥AB于D點,然后分別根據(jù)Rt△ADC中∠A的正弦、余弦值和Rt△CDB中∠B的正切值得出AD和BD的長度,從而得出AB的長度.試題解析:過點C作CD⊥AB于D點,在Rt△ADC中,∠A=30°,AC=4,∴CD=AC=×4=1,∴AD=,在Rt△CDB中,∠B=45°,CD=1,∴CD=DB=1,∴AB=AD+DB=1+1.20、1-【解析】利用零指數(shù)冪和絕對值的性質(zhì)、特殊角的三角函數(shù)值、負(fù)指數(shù)次冪的性質(zhì)進行計算即可.【詳解】解:原式=.【點睛】本題考查了零指數(shù)冪和絕對值的性質(zhì)、特殊角的三角函數(shù)值、負(fù)指數(shù)次冪的性質(zhì),熟練掌握性質(zhì)及定義是解題的關(guān)鍵.21、(1)BC與⊙O相切,理由見解析;(2).【解析】試題分析:(1)連接推出根據(jù)切線的判定推出即可;

(2)連接求出陰影部分的面積=扇形的面積,求出扇形的面積即可.試題解析:(1)BC與相切,理由:連接OD,∵AD平分∠BAC,∴∠BAD=∠DAC,∵AO=DO,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴OD⊥BC,∴BC與相切;(2)連接OE,ED,∴△OAE為等邊三角形,又∴陰影部分的面積=S扇形ODE22、CD=1【分析】利用相似三角形的判定和性質(zhì),先求出△ADC∽△CDB,再根據(jù)對應(yīng)邊成比例,即可求出CD的值.【詳解】∵CD⊥AB,∴∠ADC=∠CDB=90°,∴∠ACD+∠A=90°,∵∠ACB=90°,∴∠ACD+∠BCD=90°,∴∠A=∠BCD,∴△ADC∽△CDB,∴,∴=AD?BD=82=16,∴CD=1.【點睛】此題運用了相似三角形的判定和性質(zhì),兩個角對應(yīng)相等,則兩三角形相似.23、(1)證明見解析;(2)①;②1.【分析】(1)先根據(jù)平行線的性質(zhì)可得,再根據(jù)相似三角形的判定即可得證;(2)①設(shè),則,,先根據(jù)平行線的性質(zhì)可得,再根據(jù)三角形全等的判定定理與性質(zhì)可得,然后根據(jù)相似三角形的判定與性質(zhì)可得,由此即可得;②先求出,再在中,利用勾股定理可得,然后根據(jù)①中三角形全等的性質(zhì)可得,最后根據(jù)①中相似三角形的性質(zhì)即可得.【詳解】(1);①設(shè),則,是邊上的中線在和中,;②在中,由①已證:由①已證:.【點睛】本題考查了平行線的性質(zhì)、相似三角形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)、勾股定理等知識點,熟練掌握相似三角形的判定與性質(zhì)是解題關(guān)鍵.24、(1);(2)【解析】(1)直接利用求概率公式計算即可;(2)畫樹狀圖(或列表格)列出所有等可能結(jié)果,根據(jù)概率公式即可解答.【詳解】(1);(2)方法1:根據(jù)題意可畫樹狀圖如下:方法2:根據(jù)題意可列表格如下:弟弟姐姐ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表(樹狀圖)可知,總共有12種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B喬治的結(jié)果有1種:(A,B).∴P(姐姐抽到A佩奇,弟弟抽到B喬治)【點睛】本題考查的是用列表法或樹狀圖法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解決問題用到概率公式:概率=所求情況數(shù)與總情況數(shù)之比.25、(1)y=﹣2x2+30x;6≤x<11;(2)當(dāng)x=7.1時,y的最大值是112.1.【分析】(1)利用矩形的面積公式,列出面積y關(guān)于x的函數(shù)解析式,即可求解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論