版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如圖在直角坐標(biāo)系中,過原點作曲線的切線,切點為,過點分別作、軸的垂線,垂足分別為、,在矩形中隨機選取一點,則它在陰影部分的概率為()A. B. C. D.3.在中,D為的中點,E為上靠近點B的三等分點,且,相交于點P,則()A. B.C. D.4.我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果,哥德巴赫猜想的內(nèi)容是:每個大于2的偶數(shù)都可以表示為兩個素數(shù)的和,例如:,,,那么在不超過18的素數(shù)中隨機選取兩個不同的數(shù),其和等于16的概率為()A. B. C. D.5.若函數(shù)f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調(diào)遞減區(qū)間是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]6.設(shè)為坐標(biāo)原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A. B. C. D.17.已知復(fù)數(shù)(1+i)(a+i)為純虛數(shù)(i為虛數(shù)單位),則實數(shù)a=()A.-1 B.1 C.0 D.28.若集合,,則()A. B. C. D.9.已知等式成立,則()A.0 B.5 C.7 D.1310.已知集合,將集合的所有元素從小到大一次排列構(gòu)成一個新數(shù)列,則()A.1194 B.1695 C.311 D.109511.已知不重合的平面和直線,則“”的充分不必要條件是()A.內(nèi)有無數(shù)條直線與平行 B.且C.且 D.內(nèi)的任何直線都與平行12.設(shè)x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是定義在上的奇函數(shù),則的值為__________.14.如圖,橢圓:的離心率為,F(xiàn)是的右焦點,點P是上第一角限內(nèi)任意一點,,,若,則的取值范圍是_______.15.已知,則=___________,_____________________________16.已知,,且,則的最小值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)(Ⅰ)證明:;(Ⅱ)證明:();(Ⅲ)證明:.18.(12分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點,是上異于,的點,.(1)證明:平面平面;(2)若點為半圓弧上的一個三等分點(靠近點)求二面角的余弦值.19.(12分)如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點.(1)求證:直線MN⊥平面ACB1;(2)求點C1到平面B1MC的距離.20.(12分)已知,,為正數(shù),且,證明:(1);(2).21.(12分)已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.(1)求橢圓的方程;(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.22.(10分)某地在每周六的晚上8點到10點半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時刻亮燈的概率均為,并且是否亮燈彼此相互獨立.現(xiàn)統(tǒng)計了其中100盞燈在一場燈光展中亮燈的時長(單位:),得到下面的頻數(shù)表:亮燈時長/頻數(shù)1020402010以樣本中100盞燈的平均亮燈時長作為一盞燈的亮燈時長.(1)試估計的值;(2)設(shè)表示這10000盞燈在某一時刻亮燈的數(shù)目.①求的數(shù)學(xué)期望和方差;②若隨機變量滿足,則認(rèn)為.假設(shè)當(dāng)時,燈光展處于最佳燈光亮度.試由此估計,在一場燈光展中,處于最佳燈光亮度的時長(結(jié)果保留為整數(shù)).附:①某盞燈在某一時刻亮燈的概率等于亮燈時長與燈光展總時長的商;②若,則,,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
利用復(fù)數(shù)的四則運算以及幾何意義即可求解.【詳解】解:,則復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為:,位于第二象限.故選:B.【點睛】本題考查了復(fù)數(shù)的四則運算以及復(fù)數(shù)的幾何意義,屬于基礎(chǔ)題.2、A【解析】
設(shè)所求切線的方程為,聯(lián)立,消去得出關(guān)于的方程,可得出,求出的值,進(jìn)而求得切點的坐標(biāo),利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設(shè)所求切線的方程為,則,聯(lián)立,消去得①,由,解得,方程①為,解得,則點,所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.【點睛】本題考查定積分的計算以及幾何概型,同時也涉及了二次函數(shù)的切線方程的求解,考查計算能力,屬于中等題.3、B【解析】
設(shè),則,,由B,P,D三點共線,C,P,E三點共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因為B,P,D三點共線,C,P,E三點共線,所以,,所以,.故選:B.【點睛】本題考查了平面向量基本定理和向量共線定理的簡單應(yīng)用,屬于基礎(chǔ)題.4、B【解析】
先求出從不超過18的素數(shù)中隨機選取兩個不同的數(shù)的所有可能結(jié)果,然后再求出其和等于16的結(jié)果,根據(jù)等可能事件的概率公式可求.【詳解】解:不超過18的素數(shù)有2,3,5,7,11,13,17共7個,從中隨機選取兩個不同的數(shù)共有,其和等于16的結(jié)果,共2種等可能的結(jié)果,故概率.故選:B.【點睛】古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),本題不可以列舉出所有事件但可以用分步計數(shù)得到,屬于基礎(chǔ)題.5、B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上單調(diào)遞減,在[2,+∞)上單調(diào)遞增,所以f(x)在(-∞,2]上單調(diào)遞增,在[2,+∞)上單調(diào)遞減,故選B.6、C【解析】試題分析:設(shè),由題意,顯然時不符合題意,故,則,可得:,當(dāng)且僅當(dāng)時取等號,故選C.考點:1.拋物線的簡單幾何性質(zhì);2.均值不等式.【方法點晴】本題主要考查的是向量在解析幾何中的應(yīng)用及拋物線標(biāo)準(zhǔn)方程方程,均值不等式的靈活運用,屬于中檔題.解題時一定要注意分析條件,根據(jù)條件,利用向量的運算可知,寫出直線的斜率,注意均值不等式的使用,特別是要分析等號是否成立,否則易出問題.7、B【解析】
化簡得到z=a-1+a+1【詳解】z=1+ia+i=a-1+a+1i為純虛數(shù),故a-1=0故選:B.【點睛】本題考查了根據(jù)復(fù)數(shù)類型求參數(shù),意在考查學(xué)生的計算能力.8、B【解析】
根據(jù)正弦函數(shù)的性質(zhì)可得集合A,由集合性質(zhì)表示形式即可求得,進(jìn)而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點睛】本題考查了集合關(guān)系的判斷與應(yīng)用,集合的包含關(guān)系與補集關(guān)系的應(yīng)用,屬于中檔題.9、D【解析】
根據(jù)等式和特征和所求代數(shù)式的值的特征用特殊值法進(jìn)行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【點睛】本題考查了二項式定理的應(yīng)用,考查了特殊值代入法,考查了數(shù)學(xué)運算能力.10、D【解析】
確定中前35項里兩個數(shù)列中的項數(shù),數(shù)列中第35項為70,這時可通過比較確定中有多少項可以插入這35項里面即可得,然后可求和.【詳解】時,,所以數(shù)列的前35項和中,有三項3,9,27,有32項,所以.故選:D.【點睛】本題考查數(shù)列分組求和,掌握等差數(shù)列和等比數(shù)列前項和公式是解題基礎(chǔ).解題關(guān)鍵是確定數(shù)列的前35項中有多少項是中的,又有多少項是中的.11、B【解析】
根據(jù)充分不必要條件和直線和平面,平面和平面的位置關(guān)系,依次判斷每個選項得到答案.【詳解】A.內(nèi)有無數(shù)條直線與平行,則相交或,排除;B.且,故,當(dāng),不能得到且,滿足;C.且,,則相交或,排除;D.內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力.12、C【解析】
①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側(cè)面時.【詳解】①當(dāng)直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側(cè)面時,不正確.故選:C.【點睛】此題考查立體幾何中線面關(guān)系,選擇題一般可通過特殊值法進(jìn)行排除,屬于簡單題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先利用輔助角公式將轉(zhuǎn)化成,根據(jù)函數(shù)是定義在上的奇函數(shù)得出,從而得出函數(shù)解析式,最后求出即可.【詳解】解:,又因為定義在上的奇函數(shù),則,則,又因為,所以,,所以.故答案為:【點睛】本題考查三角函數(shù)的化簡,三角函數(shù)的奇偶性和三角函數(shù)求值,考查了基本知識的應(yīng)用能力和計算能力,是基礎(chǔ)題.14、【解析】
由于點在橢圓上運動時,與軸的正方向的夾角在變,所以先設(shè),又由,可知,從而可得,而點在橢圓上,所以將點的坐標(biāo)代入橢圓方程中化簡可得結(jié)果.【詳解】設(shè),,,則,由,得,代入橢圓方程,得,化簡得恒成立,由此得,即,故.故答案為:【點睛】此題考查的是利用橢圓中相關(guān)兩個點的關(guān)系求離心率,綜合性強,屬于難題.15、?196?3【解析】
由二項式定理及二項式展開式通項得:,令x=1,則1+a0+a1+…+a7=(1+1)×(1-2)7=-2,所以a0+a1+…+a7=-3,得解.【詳解】由二項式(1?2x)7展開式的通項得,則,令x=1,則,所以a0+a1+…+a7=?3,故答案為:?196,?3.【點睛】本題考查二項式定理及其通項,屬于中等題.16、1【解析】
先將前兩項利用基本不等式去掉,,再處理只含的算式即可.【詳解】解:,因為,所以,所以,當(dāng)且僅當(dāng),,時等號成立,故答案為:1.【點睛】本題主要考查基本不等式的應(yīng)用,但是由于有3個變量,導(dǎo)致該題不易找到思路,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】
運用數(shù)學(xué)歸納法證明即可得到結(jié)果化簡,運用累加法得出結(jié)果運用放縮法和累加法進(jìn)行求證【詳解】(Ⅰ)數(shù)學(xué)歸納法證明時,①當(dāng)時,成立;②當(dāng)時,假設(shè)成立,則時所以時,成立綜上①②可知,時,(Ⅱ)由得所以;;故,又所以(Ⅲ)由累加法得:所以故【點睛】本題考查了數(shù)列的綜合,運用數(shù)學(xué)歸納法證明不等式的成立,結(jié)合已知條件進(jìn)行化簡求出化簡后的結(jié)果,利用放縮法求出不等式,然后兩邊同時取對數(shù)再進(jìn)行證明,本題較為困難。18、(1)詳見解析;(2).【解析】
(1)由直徑所對的圓周角為,可知,通過計算,利用勾股定理的逆定理可以判斷出為直角三角形,所以有.由已知可以證明出,這樣利用線面垂直的判定定理可以證明平面,利用面面垂直的判定定理可以證明出平面平面;(2)以為坐標(biāo)原點,分別以垂直于平面向上的方向、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,求出相應(yīng)點的坐標(biāo),求出平面的一個法向量和平面的法向量,利用空間向量數(shù)量積運算公式,可以求出二面角的余弦值.【詳解】解:(1)證明:因為半圓弧上的一點,所以.在中,分別為的中點,所以,且.于是在中,,所以為直角三角形,且.因為,,所以.因為,,,所以平面.又平面,所以平面平面.(2)由已知,以為坐標(biāo)原點,分別以垂直于、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的一個法向量為,則即,取,得.設(shè)平面的法向量,則即,取,得.所以,又二面角為銳角,所以二面角的余弦值為.【點睛】本題考查了利用線面垂直判定面面垂直、利用空間向量數(shù)量積求二面角的余弦值問題.19、(1)證明見解析.(2)【解析】
(1)連接AC1,BC1,結(jié)合中位線定理可證MN∥BC1,再結(jié)合線面垂直的判定定理和線面垂直的性質(zhì)分別求證AC⊥BC1,BC1⊥B1C,即可求證直線MN⊥平面ACB1;(2)作交于點,通過等體積法,設(shè)C1到平面B1CM的距離為h,則有,結(jié)合幾何關(guān)系即可求解【詳解】(1)證明:連接AC1,BC1,則N∈AC1且N為AC1的中點;∵M(jìn)是AB的中點.所以:MN∥BC1;∵A1A⊥平面ABC,AC?平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC?平面BB1C1C,CC1?平面BB1C1C,∴AC⊥平面BB1C1C,BC?平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四邊形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC?平面ACB1,CB1?平面ACB1,∴MN⊥平面ACB1,(2)作交于點,設(shè)C1到平面B1CM的距離為h,因為MP,所以?MP,因為CM,B1C;B1M,所以所以:CM?B1M.因為,所以,解得所以點,到平面的距離為【點睛】本題主要考查面面垂直的證明以及點到平面的距離,一般證明面面垂直都用線面垂直轉(zhuǎn)化為面面垂直,而點到面的距離常用體積轉(zhuǎn)化來求,屬于中檔題20、(1)證明見解析;(2)證明見解析.【解析】
(1)利用均值不等式即可求證;(2)利用,結(jié)合,即可證明.【詳解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【點睛】本題考查利用均值不等式證明不等式,涉及的妙用,屬綜合性中檔題.21、(1);(2)存在,且方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 在線教育學(xué)習(xí)體驗提升與優(yōu)化方案設(shè)計
- 鄉(xiāng)村農(nóng)業(yè)資源整合與運營策略
- 農(nóng)業(yè)物聯(lián)網(wǎng)技術(shù)應(yīng)用合作框架協(xié)議
- 企業(yè)ISO9001質(zhì)量管理體系認(rèn)證咨詢服務(wù)合同
- 物資回收行業(yè)再生資源回收利用方案
- 2025年崇左貨運從業(yè)資格證考試題庫答案
- 2025年拉薩大車貨運資格證考試題
- 紅樓夢中的文化解讀與教學(xué)教案設(shè)計
- 勇氣鑄劍青春鋒芒現(xiàn)
- 寓言故事新編征文活動
- 小學(xué)美術(shù)桂美版三年級上冊《第8課畫身邊的小物件》省級名師授課教案課教案獲獎教案公開課教案A001
- 光電子技術(shù)(第二版)全套課件電子教案板
- 統(tǒng)編版(2024新版)七年級上冊歷史期末復(fù)習(xí)全冊知識點考點提綱
- 高中英語單詞默寫卡片新人教版必修二Unit1
- 無菌技術(shù)操作評分標(biāo)準(zhǔn)
- 《社群運營》全套教學(xué)課件
- 兒童版畫(版畫基礎(chǔ))
- 中央2024年國家國防科工局重大專項工程中心面向應(yīng)屆生招聘筆試歷年典型考題及考點附答案解析
- 先心室間隔缺損護(hù)理查房專家講座
- 車輛提檔委托書樣本
- 充值消費返利合同范本
評論
0/150
提交評論