版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第1章
集合與常用邏輯用語第1章集合與常用邏輯用語第2節(jié)充分條件與必要條件第1節(jié)集合的概念與運(yùn)算第3節(jié)全稱量詞與存在量詞
目錄第2節(jié)充分條件與必要條件第1節(jié)集合的概念與運(yùn)算第3真題自測(cè)考向速覽必備知識(shí)整合提升考點(diǎn)精析考法突破第3節(jié)全稱量詞與存在量詞真題自測(cè)考向速覽必備知識(shí)整合提升考點(diǎn)精析考法突破考點(diǎn)1全稱命題與特稱命題的真假【答案】C第3節(jié)全稱量詞與存在量詞1.[四川南充2019適應(yīng)性考試]下列命題中的假命題是()A.?x∈R,lgx=0B.?x∈R,tanx=1C.?x∈R,x2>0D.?x∈R,3x>0【解析】當(dāng)x=1時(shí),lg1=0,故A為真命題;當(dāng)x=
時(shí),tan=1,故B為真命題;當(dāng)x=0時(shí),x2=0,不滿足x2>0,故C為假命題;根據(jù)指數(shù)函數(shù)的性質(zhì)知D為真命題.故選C.真題自測(cè)考向速覽全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt考點(diǎn)1全稱命題與特稱命題的真假【答案】C第3節(jié)全稱量詞與
考點(diǎn)2全稱命題與特稱命題的否定【答案】C第3節(jié)全稱量詞與存在量詞2.[課標(biāo)全國(guó)Ⅰ2015·3]設(shè)命題p:?n∈N,n2>2n,則?p為()A.?n∈N,n2>2nB.?n∈N,n2≤2nC.?n∈N,n2≤2nD.?n∈N,n2=2n【解析】命題p為特稱命題,故?p是全稱命題,即?n∈N,n2≤2n,故選C.全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt考點(diǎn)2全稱命題與特稱命題的否定【答案】C第3節(jié)全稱量
【答案】D第3節(jié)全稱量詞與存在量詞3.[浙江2016·4]命題“?x∈R,?n∈N*,使得n≥x2”的否定形式是()A.?x∈R,?n∈N*,使得n<x2B.?x∈R,?n∈N*,使得n<x2C.?x∈R,?n∈N*,使得n<x2D.?x∈R,?n∈N*,使得n<x2【解析】“?”的否定是“?”,“?”的否定是“?”,“n≥x2”的否定是“n<x2”.故選D.全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt【答案】D第3節(jié)全稱量詞與存在量詞3.[浙江2016·【答案】C考點(diǎn)3根據(jù)命題的真假求參數(shù)的取值范圍第3節(jié)全稱量詞與存在量詞4.[江西南昌2019二模]已知函數(shù)f(x)=ax2+x+a,命題p:?x0∈R,f(x0)=0.若p為假命題,則實(shí)數(shù)a的取值范圍是()【解析】因?yàn)閜為假命題,所以?p為真命題,即?x∈R,都有f(x)≠0,若a=0,則f(x)=x,p為真命題,不符合題意,故a≠0,且Δ=1-4a2<0,解得a>或a<-,故選C.全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt【答案】C考點(diǎn)3根據(jù)命題的真假求參數(shù)的取值范圍第3節(jié)全稱5.[山東2015·12]若是真命題,則實(shí)數(shù)m的最小值為________.【答案】1第3節(jié)全稱量詞與存在量詞【解析】因?yàn)槭钦婷},所以當(dāng)x∈時(shí),
函數(shù)y=tanx是單調(diào)增函數(shù),故所以m≥1,故m的最小值為1.全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt5.[山東2015·12]若
第3節(jié)全稱量詞與存在量詞1.全稱量詞和存在量詞量詞名稱常見量詞表示符號(hào)全稱量詞所有、一切、任意、全部、每一個(gè)等________存在量詞存在一個(gè)、至少有一個(gè)、有一個(gè)、某個(gè)、有些、某些等________必備知識(shí)整合提升全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞1.全稱量詞和存在量詞量詞名稱
第3節(jié)全稱量詞與存在量詞2.全稱命題與特稱命題命題名稱命題結(jié)構(gòu)命題表示全稱命題對(duì)M中任意一個(gè)x,有p(x)成立__________特稱命題存在M中的一個(gè)x0,使p(x0)成立__________全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞2.全稱命題與特稱命題命題名稱
第3節(jié)全稱量詞與存在量詞3.命題的否定全稱命題的否定是________,特稱命題的否定是________,如表所示:命題命題的否定?x∈M,p(x)__________?x0∈M,p(x0)__________特稱命題全稱命題全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞3.命題的否定全稱命題的否定是
第3節(jié)全稱量詞與存在量詞一般地,一個(gè)命題的否定往往需要對(duì)正面敘述的詞語進(jìn)行否定.常見的一些詞語和它的否定詞語如下表:原詞語等于大于(>)小于(<)是都是否定詞語不等于不大于(≤)不小于(≥)不是不都是原詞語至多一個(gè)至少一個(gè)至多n個(gè)否定詞語至少有兩個(gè)一個(gè)也沒有至少有n+1個(gè)原詞語任意的任意兩個(gè)所有的能
否定詞語某個(gè)某兩個(gè)某些不能全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞一般地,一個(gè)命題的否定往往需要
第3節(jié)全稱量詞與存在量詞(1)詞語的否定形式可類比集合求補(bǔ)集運(yùn)算.例如,“至少有3個(gè)”可表示為{x|x≥3,x∈N},其補(bǔ)集為{x|x≤2,x∈N},所以否定形式為“至多有2個(gè)”.(2)命題的否定和否命題的區(qū)別在于,對(duì)一個(gè)命題進(jìn)行否定是對(duì)結(jié)論進(jìn)行否定,而否命題是同時(shí)否定條件和結(jié)論.全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞(1)詞語的否定形式可類比集合
第3節(jié)全稱量詞與存在量詞考點(diǎn)1全稱命題與特稱命題的真假判斷全稱命題與特稱命題真假的方法(1)要判定一個(gè)全稱命題是真命題,必須對(duì)限定集合M中的每一個(gè)元素x證明p(x)成立,但要判定全稱命題為假命題,只要能舉出集合M中的一個(gè)x0,使得p(x0)不成立即可,這就是通常所說的“舉一個(gè)反例”;(2)要判定一個(gè)特稱命題是真命題,只要在限定集合M中,能找到一個(gè)x0,使得p(x0)成立即可,否則這個(gè)特稱命題就是假命題.考點(diǎn)精析考法突破全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞考點(diǎn)1全稱命題與特稱命
第3節(jié)全稱量詞與存在量詞[山東樂陵第一中學(xué)2019測(cè)試]在下列給出的四個(gè)命題中,為真命題的是()A.?a∈R,?b∈Q,a2+b2=0B.?n∈Z,?m∈Z,nm=mC.?n∈Z,?m∈Z,n>m2D.?a∈R,?b∈Q,a2+b2=1【解析】A,若a=2,則a2+b2=0不成立,故A錯(cuò)誤;B,當(dāng)m=0時(shí),nm=m恒成立,故B正確;C,當(dāng)n=-1時(shí),n>m2不成立,故C錯(cuò)誤;D,若a=2,則a2+b2=1不成立,故D錯(cuò)誤.故選B.【答案】B全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞[山東樂陵第一中學(xué)2019測(cè)試
第3節(jié)全稱量詞與存在量詞【答案】D1.[北京海淀區(qū)2019一模]已知a<b,則下列結(jié)論中一定正確的是()A.?c<0,a>b+cB.?c<0,a<b+cC.?c>0,a>b+cD.?c>0,a<b+c【解析】A不一定成立,如a=1,b=10,c=-1,a>b+c不成立;B不一定成立,如a=9.5,b=10,c=-1,a<b+c不成立;C不成立,因?yàn)閍<b,c>0,所以a<b+c恒成立.故選D.對(duì)點(diǎn)練全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞【答案】D1.[北京海淀區(qū)20
第3節(jié)全稱量詞與存在量詞2.(多選)[山東棗莊三中2020屆學(xué)情調(diào)查]有如下命題,其中的真命題為()全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞2.(多選)[山東棗莊三中20
第3節(jié)全稱量詞與存在量詞【答案】BD全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞【答案】BD全稱量詞與存在量詞
第3節(jié)全稱量詞與存在量詞考點(diǎn)2全稱命題與特稱命題的否定否定全稱命題和特稱命題時(shí),一是要改寫量詞,全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;二是要否定結(jié)論.簡(jiǎn)記為“改量詞,否結(jié)論”.全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞考點(diǎn)2全稱命題與特稱命第3節(jié)全稱量詞與存在量詞[安徽江南十校2019綜合素質(zhì)檢測(cè)]已知命題p:?x>0,3x+x2>1,則?p為()A.?x>0,3x+x2≤1B.?x≤0,3x+x2≤1C.?x>0,3x+x2≤1D.?x≤0,3x+x2≤1【解析】因?yàn)槿Q命題的否定為特稱命題,所以?p:?x>0,3x+x2≤1,故選A.【答案】A全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞[安徽江南十校2019綜合素質(zhì)檢測(cè)
第3節(jié)全稱量詞與存在量詞3.命題p:存在常數(shù)列不是等比數(shù)列,則命題p的否定為()A.任意常數(shù)列都不是等比數(shù)列B.存在常數(shù)列是等比數(shù)列C.任意常數(shù)列都是等比數(shù)列D.不存在常數(shù)列是等比數(shù)列【解析】因?yàn)樘胤Q命題的否定是全稱命題,所以p的否定為“任意常數(shù)列都是等比數(shù)列”,故選C.【答案】C對(duì)點(diǎn)練全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞3.命題p:存在常數(shù)列不是等
第3節(jié)全稱量詞與存在量詞4.設(shè)命題p:?x∈R,x2-x+1>0,則p的否定為()A.?x∈R,x2-x+1>0B.?x∈R,x2-x+1≤0C.?x∈R,x2-x+1≤0D.?x∈R,x2-x+1<0【解析】因?yàn)槿Q命題的否定是特稱命題,所以命題p:?x∈R,x2-x+1>0的否定為“?x∈R,x2-x+1≤0”.故選C.【答案】C全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞4.設(shè)命題p:?x∈R,x2
第3節(jié)全稱量詞與存在量詞5.[山東省實(shí)驗(yàn)中學(xué)2019質(zhì)量檢查]命題“存在實(shí)數(shù)x0,使lnx0<x02-1”的否定是()A.對(duì)任意的實(shí)數(shù)x,都有l(wèi)nx<x2-1B.對(duì)任意的實(shí)數(shù)x,都有l(wèi)nx≥x2-1C.不存在實(shí)數(shù)x0,使lnx0≥x02-1D.存在實(shí)數(shù)x0,使lnx0≥x02-1【解析】特稱命題的否定是全稱命題,將特稱量詞改變后還要對(duì)結(jié)論否定,所以已知命題的否定是“對(duì)任意的實(shí)數(shù)x,都有l(wèi)nx≥x2-1”,故選B.【答案】B全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞5.[山東省實(shí)驗(yàn)中學(xué)2019質(zhì)第3節(jié)全稱量詞與存在量詞考點(diǎn)3根據(jù)命題的真假求參數(shù)的取值范圍根據(jù)命題的真假求參數(shù)的取值范圍的步驟(1)求出當(dāng)命題p,q為真命題時(shí)所含參數(shù)的取值范圍;(2)判斷命題p,q的真假性;(3)根據(jù)命題的真假情況,利用集合的交集和補(bǔ)集運(yùn)算求解參數(shù)的取值范圍.全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞考點(diǎn)3根據(jù)命題的真假求參數(shù)的【解析】對(duì)命題p,因?yàn)?x∈R,x2+2x+m≤0,所以4-4m≥0,解得m≤1;對(duì)命題q,因?yàn)閮绾瘮?shù)在(0,+∞)上是減函數(shù),所以解得2<m<3.若p真q假,可得m≤1且m≥3或m≤2,則m≤1;若p假q真,可得m>1且2<m<3,則2<m<3.故實(shí)數(shù)m的取值范圍是(-∞,1]∪(2,3).
第3節(jié)全稱量詞與存在量詞已知命題p:?x∈R,x2+2x+m≤0,命題q:冪函數(shù)在(0,+∞)上是減函數(shù).若p,q一真一假,則實(shí)數(shù)m的取值范圍是________.【答案】(-∞,1]∪(2,3)
全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt【解析】對(duì)命題p,因?yàn)?x∈R,x2+2x+m≤0,所以4-第3節(jié)全稱量詞與存在量詞【答案】B6.已知命題p:?x∈[1,2],x2+1≥a,命題q:?x∈R,x2+2ax+1=0.若命題p與q均為真命題,則實(shí)數(shù)a的取值范圍是()A.(-∞,-2]∪[1,+∞)B.(-∞,-1]∪[1,2]C.[1,+∞)D.[-2,1]【解析】若p為真命題,則x2+1≥a對(duì)?x∈[1,2]都成立,即a≤2;若命題q為真命題,則Δ=4a2-4≥0,即a≤-1或a≥1.取交集可得a≤-1或1≤a≤2.故選B.對(duì)點(diǎn)練全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞【答案】B6.已知命題p:?x∈[
第3節(jié)全稱量詞與存在量詞【答案】A7.[湖南長(zhǎng)沙雅禮中學(xué)2020屆月考]若“?x0∈使得2x02-λx0+1<0成立”是假命題,則實(shí)數(shù)λ的取值范圍是()
【解析】因?yàn)椤?x0∈,使得2x02-λx0+1<0成立”是假命題,所以“?x∈,2x2-λx+1≥0恒成立”是真命題,即“恒成立”是真命題.當(dāng)x∈時(shí),由基本不等式得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以λ≤,因此實(shí)數(shù)λ的取值范圍是(-∞,],故選A.全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞【答案】A7.[湖南長(zhǎng)沙雅禮中
第3節(jié)全稱量詞與存在量詞【答案】8.[安徽江淮十校2019第三次聯(lián)考]若命題“?x∈,1+tanx≤m”的否定是假命題,則實(shí)數(shù)m的取值范圍是________.【解析】因?yàn)橐阎}的否定是假命題,所以原命題為真,即不等式1+tanx≤m對(duì)?x∈恒成立.又y=1+tanx在上為增函數(shù),所以,即m≥,即實(shí)數(shù)m的取值范圍是.全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞【答案】8.[安徽江淮十校20第1章
集合與常用邏輯用語第1章集合與常用邏輯用語第2節(jié)充分條件與必要條件第1節(jié)集合的概念與運(yùn)算第3節(jié)全稱量詞與存在量詞
目錄第2節(jié)充分條件與必要條件第1節(jié)集合的概念與運(yùn)算第3真題自測(cè)考向速覽必備知識(shí)整合提升考點(diǎn)精析考法突破第3節(jié)全稱量詞與存在量詞真題自測(cè)考向速覽必備知識(shí)整合提升考點(diǎn)精析考法突破考點(diǎn)1全稱命題與特稱命題的真假【答案】C第3節(jié)全稱量詞與存在量詞1.[四川南充2019適應(yīng)性考試]下列命題中的假命題是()A.?x∈R,lgx=0B.?x∈R,tanx=1C.?x∈R,x2>0D.?x∈R,3x>0【解析】當(dāng)x=1時(shí),lg1=0,故A為真命題;當(dāng)x=
時(shí),tan=1,故B為真命題;當(dāng)x=0時(shí),x2=0,不滿足x2>0,故C為假命題;根據(jù)指數(shù)函數(shù)的性質(zhì)知D為真命題.故選C.真題自測(cè)考向速覽全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt考點(diǎn)1全稱命題與特稱命題的真假【答案】C第3節(jié)全稱量詞與
考點(diǎn)2全稱命題與特稱命題的否定【答案】C第3節(jié)全稱量詞與存在量詞2.[課標(biāo)全國(guó)Ⅰ2015·3]設(shè)命題p:?n∈N,n2>2n,則?p為()A.?n∈N,n2>2nB.?n∈N,n2≤2nC.?n∈N,n2≤2nD.?n∈N,n2=2n【解析】命題p為特稱命題,故?p是全稱命題,即?n∈N,n2≤2n,故選C.全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt考點(diǎn)2全稱命題與特稱命題的否定【答案】C第3節(jié)全稱量
【答案】D第3節(jié)全稱量詞與存在量詞3.[浙江2016·4]命題“?x∈R,?n∈N*,使得n≥x2”的否定形式是()A.?x∈R,?n∈N*,使得n<x2B.?x∈R,?n∈N*,使得n<x2C.?x∈R,?n∈N*,使得n<x2D.?x∈R,?n∈N*,使得n<x2【解析】“?”的否定是“?”,“?”的否定是“?”,“n≥x2”的否定是“n<x2”.故選D.全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt【答案】D第3節(jié)全稱量詞與存在量詞3.[浙江2016·【答案】C考點(diǎn)3根據(jù)命題的真假求參數(shù)的取值范圍第3節(jié)全稱量詞與存在量詞4.[江西南昌2019二模]已知函數(shù)f(x)=ax2+x+a,命題p:?x0∈R,f(x0)=0.若p為假命題,則實(shí)數(shù)a的取值范圍是()【解析】因?yàn)閜為假命題,所以?p為真命題,即?x∈R,都有f(x)≠0,若a=0,則f(x)=x,p為真命題,不符合題意,故a≠0,且Δ=1-4a2<0,解得a>或a<-,故選C.全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt【答案】C考點(diǎn)3根據(jù)命題的真假求參數(shù)的取值范圍第3節(jié)全稱5.[山東2015·12]若是真命題,則實(shí)數(shù)m的最小值為________.【答案】1第3節(jié)全稱量詞與存在量詞【解析】因?yàn)槭钦婷},所以當(dāng)x∈時(shí),
函數(shù)y=tanx是單調(diào)增函數(shù),故所以m≥1,故m的最小值為1.全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt5.[山東2015·12]若
第3節(jié)全稱量詞與存在量詞1.全稱量詞和存在量詞量詞名稱常見量詞表示符號(hào)全稱量詞所有、一切、任意、全部、每一個(gè)等________存在量詞存在一個(gè)、至少有一個(gè)、有一個(gè)、某個(gè)、有些、某些等________必備知識(shí)整合提升全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞1.全稱量詞和存在量詞量詞名稱
第3節(jié)全稱量詞與存在量詞2.全稱命題與特稱命題命題名稱命題結(jié)構(gòu)命題表示全稱命題對(duì)M中任意一個(gè)x,有p(x)成立__________特稱命題存在M中的一個(gè)x0,使p(x0)成立__________全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞2.全稱命題與特稱命題命題名稱
第3節(jié)全稱量詞與存在量詞3.命題的否定全稱命題的否定是________,特稱命題的否定是________,如表所示:命題命題的否定?x∈M,p(x)__________?x0∈M,p(x0)__________特稱命題全稱命題全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞3.命題的否定全稱命題的否定是
第3節(jié)全稱量詞與存在量詞一般地,一個(gè)命題的否定往往需要對(duì)正面敘述的詞語進(jìn)行否定.常見的一些詞語和它的否定詞語如下表:原詞語等于大于(>)小于(<)是都是否定詞語不等于不大于(≤)不小于(≥)不是不都是原詞語至多一個(gè)至少一個(gè)至多n個(gè)否定詞語至少有兩個(gè)一個(gè)也沒有至少有n+1個(gè)原詞語任意的任意兩個(gè)所有的能
否定詞語某個(gè)某兩個(gè)某些不能全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞一般地,一個(gè)命題的否定往往需要
第3節(jié)全稱量詞與存在量詞(1)詞語的否定形式可類比集合求補(bǔ)集運(yùn)算.例如,“至少有3個(gè)”可表示為{x|x≥3,x∈N},其補(bǔ)集為{x|x≤2,x∈N},所以否定形式為“至多有2個(gè)”.(2)命題的否定和否命題的區(qū)別在于,對(duì)一個(gè)命題進(jìn)行否定是對(duì)結(jié)論進(jìn)行否定,而否命題是同時(shí)否定條件和結(jié)論.全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞(1)詞語的否定形式可類比集合
第3節(jié)全稱量詞與存在量詞考點(diǎn)1全稱命題與特稱命題的真假判斷全稱命題與特稱命題真假的方法(1)要判定一個(gè)全稱命題是真命題,必須對(duì)限定集合M中的每一個(gè)元素x證明p(x)成立,但要判定全稱命題為假命題,只要能舉出集合M中的一個(gè)x0,使得p(x0)不成立即可,這就是通常所說的“舉一個(gè)反例”;(2)要判定一個(gè)特稱命題是真命題,只要在限定集合M中,能找到一個(gè)x0,使得p(x0)成立即可,否則這個(gè)特稱命題就是假命題.考點(diǎn)精析考法突破全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞考點(diǎn)1全稱命題與特稱命
第3節(jié)全稱量詞與存在量詞[山東樂陵第一中學(xué)2019測(cè)試]在下列給出的四個(gè)命題中,為真命題的是()A.?a∈R,?b∈Q,a2+b2=0B.?n∈Z,?m∈Z,nm=mC.?n∈Z,?m∈Z,n>m2D.?a∈R,?b∈Q,a2+b2=1【解析】A,若a=2,則a2+b2=0不成立,故A錯(cuò)誤;B,當(dāng)m=0時(shí),nm=m恒成立,故B正確;C,當(dāng)n=-1時(shí),n>m2不成立,故C錯(cuò)誤;D,若a=2,則a2+b2=1不成立,故D錯(cuò)誤.故選B.【答案】B全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞[山東樂陵第一中學(xué)2019測(cè)試
第3節(jié)全稱量詞與存在量詞【答案】D1.[北京海淀區(qū)2019一模]已知a<b,則下列結(jié)論中一定正確的是()A.?c<0,a>b+cB.?c<0,a<b+cC.?c>0,a>b+cD.?c>0,a<b+c【解析】A不一定成立,如a=1,b=10,c=-1,a>b+c不成立;B不一定成立,如a=9.5,b=10,c=-1,a<b+c不成立;C不成立,因?yàn)閍<b,c>0,所以a<b+c恒成立.故選D.對(duì)點(diǎn)練全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞【答案】D1.[北京海淀區(qū)20
第3節(jié)全稱量詞與存在量詞2.(多選)[山東棗莊三中2020屆學(xué)情調(diào)查]有如下命題,其中的真命題為()全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞2.(多選)[山東棗莊三中20
第3節(jié)全稱量詞與存在量詞【答案】BD全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞【答案】BD全稱量詞與存在量詞
第3節(jié)全稱量詞與存在量詞考點(diǎn)2全稱命題與特稱命題的否定否定全稱命題和特稱命題時(shí),一是要改寫量詞,全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;二是要否定結(jié)論.簡(jiǎn)記為“改量詞,否結(jié)論”.全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞考點(diǎn)2全稱命題與特稱命第3節(jié)全稱量詞與存在量詞[安徽江南十校2019綜合素質(zhì)檢測(cè)]已知命題p:?x>0,3x+x2>1,則?p為()A.?x>0,3x+x2≤1B.?x≤0,3x+x2≤1C.?x>0,3x+x2≤1D.?x≤0,3x+x2≤1【解析】因?yàn)槿Q命題的否定為特稱命題,所以?p:?x>0,3x+x2≤1,故選A.【答案】A全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞[安徽江南十校2019綜合素質(zhì)檢測(cè)
第3節(jié)全稱量詞與存在量詞3.命題p:存在常數(shù)列不是等比數(shù)列,則命題p的否定為()A.任意常數(shù)列都不是等比數(shù)列B.存在常數(shù)列是等比數(shù)列C.任意常數(shù)列都是等比數(shù)列D.不存在常數(shù)列是等比數(shù)列【解析】因?yàn)樘胤Q命題的否定是全稱命題,所以p的否定為“任意常數(shù)列都是等比數(shù)列”,故選C.【答案】C對(duì)點(diǎn)練全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞3.命題p:存在常數(shù)列不是等
第3節(jié)全稱量詞與存在量詞4.設(shè)命題p:?x∈R,x2-x+1>0,則p的否定為()A.?x∈R,x2-x+1>0B.?x∈R,x2-x+1≤0C.?x∈R,x2-x+1≤0D.?x∈R,x2-x+1<0【解析】因?yàn)槿Q命題的否定是特稱命題,所以命題p:?x∈R,x2-x+1>0的否定為“?x∈R,x2-x+1≤0”.故選C.【答案】C全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞4.設(shè)命題p:?x∈R,x2
第3節(jié)全稱量詞與存在量詞5.[山東省實(shí)驗(yàn)中學(xué)2019質(zhì)量檢查]命題“存在實(shí)數(shù)x0,使lnx0<x02-1”的否定是()A.對(duì)任意的實(shí)數(shù)x,都有l(wèi)nx<x2-1B.對(duì)任意的實(shí)數(shù)x,都有l(wèi)nx≥x2-1C.不存在實(shí)數(shù)x0,使lnx0≥x02-1D.存在實(shí)數(shù)x0,使lnx0≥x02-1【解析】特稱命題的否定是全稱命題,將特稱量詞改變后還要對(duì)結(jié)論否定,所以已知命題的否定是“對(duì)任意的實(shí)數(shù)x,都有l(wèi)nx≥x2-1”,故選B.【答案】B全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞5.[山東省實(shí)驗(yàn)中學(xué)2019質(zhì)第3節(jié)全稱量詞與存在量詞考點(diǎn)3根據(jù)命題的真假求參數(shù)的取值范圍根據(jù)命題的真假求參數(shù)的取值范圍的步驟(1)求出當(dāng)命題p,q為真命題時(shí)所含參數(shù)的取值范圍;(2)判斷命題p,q的真假性;(3)根據(jù)命題的真假情況,利用集合的交集和補(bǔ)集運(yùn)算求解參數(shù)的取值范圍.全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt全稱量詞與存在量詞新高考數(shù)學(xué)自主復(fù)習(xí)ppt第3節(jié)全稱量詞與存在量詞考點(diǎn)3根據(jù)命題的真假求參數(shù)的【解析】對(duì)命題p,因?yàn)?x∈R,x2+2x+m≤0,所以4-4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年廠房租賃補(bǔ)充協(xié)議
- 2025年分期付款信用協(xié)議
- 2025年衛(wèi)浴產(chǎn)品設(shè)計(jì)合同
- 中國(guó)阿奇霉素腸溶片市場(chǎng)全面調(diào)研及行業(yè)投資潛力預(yù)測(cè)報(bào)告
- 2025版木材認(rèn)證機(jī)構(gòu)服務(wù)采購合同示范3篇
- 二零二五年度公司股權(quán)激勵(lì)項(xiàng)目財(cái)務(wù)規(guī)劃與預(yù)算合同3篇
- 2025年度儲(chǔ)煤場(chǎng)租賃與煤炭交易結(jié)算服務(wù)合同3篇
- 2025年度新能源行業(yè)競(jìng)業(yè)限制解除通知
- 2025年度私人車位租賃與車位租賃期限續(xù)簽合同
- 2025年度車庫使用權(quán)轉(zhuǎn)讓及車位租賃權(quán)分配協(xié)議
- 2024多級(jí)AO工藝污水處理技術(shù)規(guī)程
- 2024年江蘇省鹽城市中考數(shù)學(xué)試卷真題(含答案)
- DZ∕T 0287-2015 礦山地質(zhì)環(huán)境監(jiān)測(cè)技術(shù)規(guī)程(正式版)
- 2024年合肥市廬陽區(qū)中考二模英語試題含答案
- 質(zhì)檢中心制度匯編討論版樣本
- 藥娘激素方案
- 提高靜脈留置使用率品管圈課件
- GB/T 10739-2023紙、紙板和紙漿試樣處理和試驗(yàn)的標(biāo)準(zhǔn)大氣條件
- 《心態(tài)與思維模式》課件
- C語言程序設(shè)計(jì)(慕課版 第2版)PPT完整全套教學(xué)課件
- 危險(xiǎn)化學(xué)品企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化課件
評(píng)論
0/150
提交評(píng)論