2022年浙江省桐鄉(xiāng)市九年級數(shù)學第一學期期末考試試題含解析_第1頁
2022年浙江省桐鄉(xiāng)市九年級數(shù)學第一學期期末考試試題含解析_第2頁
2022年浙江省桐鄉(xiāng)市九年級數(shù)學第一學期期末考試試題含解析_第3頁
2022年浙江省桐鄉(xiāng)市九年級數(shù)學第一學期期末考試試題含解析_第4頁
2022年浙江省桐鄉(xiāng)市九年級數(shù)學第一學期期末考試試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.一元二次方程的解為()A., B. C. D.,2.已知反比例函數(shù)圖象如圖所示,下列說法正確的是()A.B.隨的增大而減小C.若矩形面積為2,則D.若圖象上兩個點的坐標分別是,,則3.如圖,在平面直角坐標系中,點、在函數(shù)的圖象上,過點分別作軸、軸的垂線,垂足為、;過點分別作軸、軸的垂線,垂足為、.交于點,隨著的增大,四邊形的面積()A.增大 B.減小 C.先減小后增大 D.先增大后減小4.用配方法解方程,配方后得到的方程是()A. B. C. D.5.某反比例函數(shù)的圖象經(jīng)過點(-2,3),則此函數(shù)圖象也經(jīng)過()A.(2,-3) B.(-3,3) C.(2,3) D.(-4,6)6.一次函數(shù)y=(k﹣1)x+3的圖象經(jīng)過點(﹣2,1),則k的值是()A.﹣1 B.2 C.1 D.07.已知圓錐的母線長是12,它的側面展開圖的圓心角是120°,則它的底面圓的直徑為()A.2 B.4 C.6 D.88.下列圖形都是由同樣大小的五角星按一定的規(guī)律組成,其中第①個圖形一共有2個五角星,第②個圖形一共有8個五角星,第③個圖形一共有18個五角星,…,則第⑦個圖形中五角星的個數(shù)為()A.90 B.94 C.98 D.1029.下列調(diào)查中,適合采用全面調(diào)查(普查)方式的是()A.了解重慶市中小學學生課外閱讀情況B.了解重慶市空氣質(zhì)量情況C.了解重慶市市民收看重慶新聞的情況D.了解某班全體同學九年級上期第一次月考數(shù)學成績得分的情況10.已知⊙O的半徑為1,點P到圓心的距離為d,若關于x的方程x-2x+d=0有實數(shù)根,則點P()A.在⊙O的內(nèi)部 B.在⊙O的外部 C.在⊙O上 D.在⊙O上或⊙O內(nèi)部11.如圖,與正六邊形的邊分別交于點,點為劣弧的中點.若.則點到的距離是()A. B. C. D.12.的值等于()A. B. C. D.二、填空題(每題4分,共24分)13.若關于x的一元二次方程(k﹣1)x2+4x+1=0有實數(shù)根,則k的取值范圍是_____.14.如圖,拋物線與x軸交于A、B兩點,與y軸交于C點,⊙B的圓心為B,半徑是1,點P是直線AC上的動點,過點P作⊙B的切線,切點是Q,則切線長PQ的最小值是__.15.已知,那么=______.16.△ABC中,∠C=90°,tanA=,則sinA+cosA=_____.17.如圖,繞著點順時針旋轉(zhuǎn)得到,連接,延長交于點,若,則的長為__________.18.如圖,某水壩的坡比為,坡長為米,則該水壩的高度為__________米.三、解答題(共78分)19.(8分)如圖,在Rt△ABC中,∠ACB=90°.在斜邊AB上取一點D,使CD=CB,圓心在AC上的⊙O過A、D兩點,交AC于點E.(1)求證:CD是⊙O的切線;(2)若,且AE=2,求CE的長.20.(8分)如圖,已知直線與x軸、y軸分別交于點A,B,與雙曲線分別交于點C,D,且點C的坐標為.(1)分別求出直線、雙曲線的函數(shù)表達式.(2)求出點D的坐標.(3)利用圖象直接寫出:當x在什么范圍內(nèi)取值時?21.(8分)如圖,四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,且點E在線段AD上,若AF=4,∠F=60°.(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;(2)求DE的長度和∠EBD的度數(shù).22.(10分)為了測量山坡上的電線桿的高度,數(shù)學興趣小組帶上測角器和皮尺來到山腳下,他們在處測得信號塔頂端的仰角是,信號塔底端點的仰角為,沿水平地面向前走100米到處,測得信號塔頂端的仰角是,求信號塔的高度.(結果保留整數(shù))23.(10分)如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B(3,b)兩點.(1)求反比例函數(shù)的表達式(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標(3)求△PAB的面積.24.(10分)如圖,在平面直角坐標系中,的三個頂點坐標分別為、、.(1)點關于坐標原點對稱的點的坐標為______;(2)將繞著點順時針旋轉(zhuǎn),畫出旋轉(zhuǎn)后得到的;(3)在(2)中,求邊所掃過區(qū)域的面積是多少?(結果保留).(4)若、、三點的橫坐標都加3,縱坐標不變,圖形的位置發(fā)生怎樣的變化?25.(12分)如圖1,在中,,,,點是邊上一個動點(不與、重合),點為射線上一點,且,以點為圓心,為半徑作,設.(1)如圖2,當點與點重合時,求的值;(2)當點在線段上,如果與的另一個交點在線段上時,設,試求與之間的函數(shù)解析式,并寫出的取值范圍;(3)在點的運動過程中,如果與線段只有一個公共點,請直接寫出的取值范圍.26.已知關于的一元二次方程.(1)若此方程有兩個實數(shù)根,求的最小整數(shù)值;(2)若此方程的兩個實數(shù)根為,,且滿足,求的值.

參考答案一、選擇題(每題4分,共48分)1、A【分析】根據(jù)因式分解法中的提取公因式法進行求解即可;【詳解】故選A.【點睛】本題主要考查了一元二次方程因式分解法中的提取公因式法,準確計算是解題的關鍵.2、D【分析】根據(jù)反比例函數(shù)的圖象的位置確定其比例系數(shù)的符號,利用反比例函數(shù)的性質(zhì)進行判斷即可.【詳解】解:A.反比例函數(shù)的圖象位于第二象限,∴k﹤0故A錯誤;

B.在第二象限內(nèi)隨的增大而增大,故B錯誤;

C.矩形面積為2,∵k﹤0,∴k=-2,故C錯誤;

D.∵圖象上兩個點的坐標分別是,,在第二象限內(nèi)隨的增大而增大,∴,故D正確,

故選D.【點睛】本題考查了反比例函數(shù)的性質(zhì),牢記反比例函數(shù)的比例系數(shù)的符號與其圖象的關系是解決本題的關鍵.3、A【分析】首先利用a和b表示出AC和CQ的長,則四邊形ACQE的面積即可利用a、b表示,然后根據(jù)函數(shù)的性質(zhì)判斷.【詳解】解:AC=a?2,CQ=b,則S四邊形ACQE=AC?CQ=(a?2)b=ab?2b.∵、在函數(shù)的圖象上,∴ab=k=10(常數(shù)).∴S四邊形ACQE=AC?CQ=10?2b,∵當a>2時,b隨a的增大而減小,∴S四邊形ACQE=10?2b隨a的增大而增大.故選:A.【點睛】本題考查了反比例函數(shù)的性質(zhì)以及矩形的面積的計算,利用b表示出四邊形ACQE的面積是關鍵.4、A【分析】將方程的一次項移到左邊,兩邊加上4變形后,即可得到結果.【詳解】解:方程移項得:x2?4x=1,

配方得:x2?4x+4=1,

即(x?2)2=1.

故選A.【點睛】本題考查了用配方法解一元二次方程,解題的關鍵是熟記完全平方公式.5、A【分析】設反比例函數(shù)y=(k為常數(shù),k≠0),由于反比例函數(shù)的圖象經(jīng)過點(-2,3),則k=-6,然后根據(jù)反比例函數(shù)圖象上點的坐標特征分別進行判斷.【詳解】設反比例函數(shù)y=(k為常數(shù),k≠0),∵反比例函數(shù)的圖象經(jīng)過點(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴點(2,-3)在反比例函數(shù)y=-的圖象上.故選A.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.6、B【分析】函數(shù)經(jīng)過點(﹣1,1),把點的坐標代入解析式,即可求得k的值.【詳解】解:根據(jù)題意得:﹣1(k﹣1)+3=1,解得:k=1.故選B.【點睛】本題主要考查了函數(shù)的解析式與圖象的關系,滿足解析式的點一定在圖象上,圖象上的點一定滿足函數(shù)解析式.7、D【分析】根據(jù)圓錐側面展開圖的圓心角與半徑(即圓錐的母線的長度)求得的弧長,就是圓錐的底面的周長,然后根據(jù)圓的周長公式l=2πr解出r的值即可.【詳解】試題解析:設圓錐的底面半徑為r圓錐的側面展開扇形的半徑為12,∵它的側面展開圖的圓心角是∴弧長即圓錐底面的周長是解得,r=4,∴底面圓的直徑為1.故選:D.【點睛】本題考查了圓錐的計算.正確理解圓錐的側面展開圖與原來的扇形之間的關系是解決本題的關鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.8、C【分析】根據(jù)前三個圖形可得到第n個圖形一共有個五角星,當n=7代入計算即可.【詳解】解:第①個圖形一共有個五角星;第②個圖形一共有個五角星;第③個圖形一共有個五角星;……第n個圖形一共有個五角星,所以第⑦個圖形一共有個五角星.故答案選C.【點睛】本題主要考查規(guī)律探索,解題的關鍵是找準規(guī)律.9、D【解析】調(diào)查方式的選擇需要將普查的局限性和抽樣調(diào)查的必要性結合起來,具體問題具體分析,普查結果準確,所以在要求精確、難度相對不大,實驗無破壞性的情況下應選擇普查方式,當考查的對象很多或考查會給被調(diào)查對象帶來損傷破壞,以及考查經(jīng)費和時間都非常有限時,普查就受到限制,這時就應選擇抽樣調(diào)查.【詳解】解:A、了解重慶市中小學學生課外閱讀情況,由于范圍較大,適合用抽樣調(diào)查;故此選項錯誤;B、了解重慶市空氣質(zhì)量情況,適合抽樣調(diào)查,故此選項錯誤;C、了解重慶市市民收看重慶新聞的情況,由于范圍較大,適合用抽樣調(diào)查;故此選項錯誤;D、了解某班全體同學九年級上期第一次月考數(shù)學成績得分的情況,范圍較小,采用全面調(diào)查;故此選項正確;故選:D.【點睛】此題主要考查了適合普查的方式,一般有以下幾種:①范圍較??;②容易掌控;③不具有破壞性;④可操作性較強.基于以上各點,“了解全班同學本周末參加社區(qū)活動的時間”適合普查,其它幾項都不符合以上特點,不適合普查.10、D【分析】先根據(jù)條件x

2

-2x+d=0有實根得出判別式大于或等于0,求出d的范圍,進而得出d與r的數(shù)量關系,即可判斷點P和⊙O的關系..【詳解】解:∵關于x的方程x

2

-2x+d=0有實根,∴根的判別式△=(-2)

2

-4×d≥0,解得d≤1,∵⊙O的半徑為r=1,∴d≤r∴點P在圓內(nèi)或在圓上.故選:D.【點睛】本題考查了點和圓的位置關系,由點到圓心的距離和半徑的數(shù)量關系對點和圓的位置關系作出判斷是解答此題的重要途徑,即當d>r時,點在圓外,當d=r時,點在圓上,當d<r時,點在圓內(nèi).11、C【分析】連接OM,作,交MF與點H,根據(jù)正六邊性的性質(zhì)可得出,,得出為等邊三角形,再求OH即可.【詳解】解:∵六邊形是正六邊形,∴∵點為劣弧的中點∴連接OM,作,交MF與點H∵為等邊三角形∴FM=OM,∴故答案為:C.【點睛】本題考查的知識點有多邊形的內(nèi)角與外角,特殊角的三角函數(shù)值,等邊三角形的性質(zhì),理解題意正確作出輔助線是解題的關鍵.12、A【分析】根據(jù)特殊角的三角函數(shù)值解題即可.【詳解】解:cos60°=.故選A.【點睛】本題考查了特殊角的三角函數(shù)值.二、填空題(每題4分,共24分)13、k≤5且k≠1.【解析】試題解析:∵一元二次方程(k﹣1)x2+4x+1=0有實數(shù)根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1.考點:根的判別式.14、【分析】先根據(jù)解析式求出點A、B、C的坐標,求出直線AC的解析式,設點P的坐標,根據(jù)過點P作⊙B的切線,切點是Q得到PQ的函數(shù)關系式,求出最小值即可.【詳解】令中y=0,得x1=-,x2=5,∴直線AC的解析式為,設P(x,),∵過點P作⊙B的切線,切點是Q,BQ=1∴PQ2=PB2-BQ2,=(x-5)2+()2-1,=,∵,∴PQ2有最小值,∴PQ的最小值是,故答案為:,【點睛】此題考查二次函數(shù)最小值的實際應用,求動線段的最小值,需構建關于此線段的函數(shù)解析式,利用二次函數(shù)頂點坐標公式求最值,此題找到線段PQ、BQ、PB之間的關系式是解題的關鍵.15、【分析】直接把代入解析式,即可得到答案.【詳解】解:∵,∴當時,有;故答案為:.【點睛】本題考查了求函數(shù)值,解題的關鍵是熟練掌握函數(shù)的解析式.16、【解析】∵在△ABC中,∠C=90°,,∴可設BC=4k,AC=3k,∴由勾股定理可得AB=5k,∴sinA=,cosA=,∴sinA+cosA=.故答案為.17、【分析】根據(jù)題意延長交于點,則,延長交于點,根據(jù)已知可以得到CC′,B′C′,BF,B′F;求出,∵△MEC′∽△BEC,得到求出CE即可.【詳解】Rt△ABC繞著點順時針旋轉(zhuǎn)得到,.又.如圖,延長交于點,則,延長交于點,則.,,即,解得,∵△MEC′∽△BEC,,,解得∴CE=CC′+EC′=3+=【點睛】此題主要考查了旋轉(zhuǎn)變化的性質(zhì)和特征,相似三角形的性質(zhì),熟記性質(zhì)是解題的關鍵,注意相似三角形的選擇.18、【分析】根據(jù)坡度的定義,可得,從而得∠A=30°,進而即可求解.【詳解】∵水壩的坡比為,∠C=90°,∴,即:tan∠A=∴∠A=30°,∵為米,∴為1米.故答案是:1.【點睛】本題主要考查坡度的定義和三角函數(shù)的定義,掌握坡度的定義,是解題的關鍵.三、解答題(共78分)19、(1)詳見解析;(2)CE=.【分析】(1)連接OD,由CD=CB,OA=OD,可以推出∠B=∠CDB,∠A=∠ODA,再根據(jù)∠ACB=90°,推出∠A+∠B=90°,證明∠ODC=90°,即可證明CD是⊙O的切線;(2)連接DE,證明△CDE∽△CAD,得到,結合已知條件,設BC=x=CD,則AC=3x,CE=3x-2,列出方程,求出x,即可求出CE的長度.【詳解】解:(1)連接OD.∵CD=CB,OA=OD,∴∠B=∠CDB,∠A=∠ODA.又∵∠ACB=90°,∴∠A+∠B=90°,∴∠ODA+∠CDB=90°,∴∠ODC=180°-(∠ODA+∠CDB)=90°,即CD⊥OD,∴CD是⊙O的切線.(2)連接DE.∵AE是⊙O的直徑,∴∠ADE=∠ADO+∠ODE=90°,又∵∠ODC=∠CDE+∠ODE=90°,∴∠ADO=∠CDE.又∵∠DCE=∠DCA,∴△CDE∽△CAD,∴∵,AE=2,∴可設BC=x=CD,則AC=3x,CE=3x-2,即解得,∴CE=3x-2=【點睛】本題主要考查了圓的切線證明以及圓與相似綜合問題,能夠合理的作出輔助線以及找出相似三角形,列出比例式是解決本題的關鍵.20、(1),;(2)點D的坐標是;(3)【解析】(1)把C(-1,2)代入y1=x+m得到m的值,把C(-1,2)代入雙曲線得到k的值;(2)解由兩個函數(shù)的解析式組成的方程組,即可得交點坐標D;

(3)觀察圖象得到當-3<x<-2時一次函數(shù)的函數(shù)值比反比例函數(shù)的函數(shù)值要大.【詳解】解:(1)∵點在的圖象上;∴,解得,則.∵在的圖象上,∴,解得,∴.(2)聯(lián)立得,解得,或,∵點C的坐標是,∴點D的坐標是.(3)由圖象可知,當時,【點睛】本題考查了用待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式即反比例函數(shù)與一次函數(shù)的交點問題.解題的關鍵是:(1)代入點C的坐標求出m、k的值;(2)把兩函數(shù)的解析式聯(lián)立起來組成方程組,解方程組即可得到它們的交點坐標.(3)根據(jù)兩函數(shù)圖象的上下位置關系找出不等式的解集.本題考查的是反比例函數(shù)與一次函數(shù)的交點問題及也考查了數(shù)形結合的思想.21、(1)90°;(2)15°.【解析】試題分析:(1)由于△ADF旋轉(zhuǎn)一定角度后得到△ABE,根據(jù)旋轉(zhuǎn)的性質(zhì)得到旋轉(zhuǎn)中心為點A,∠DAB等于旋轉(zhuǎn)角,于是得到旋轉(zhuǎn)角為90°;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得到AE=AF=4,∠AEB=∠F=60°,則∠ABE=90°﹣60°=30°,解直角三角形得到AD=4,∠ABD=45°,所以DE=4﹣4,然后利用∠EBD=∠ABD﹣∠ABE計算即可.試題解析:(1)∵△ADF旋轉(zhuǎn)一定角度后得到△ABE,∴旋轉(zhuǎn)中心為點A,∠DAB等于旋轉(zhuǎn)角,∴旋轉(zhuǎn)角為90°;(2)∵△ADF以點A為旋轉(zhuǎn)軸心,順時針旋轉(zhuǎn)90°后得到△ABE,∴AE=AF=4,∠AEB=∠F=60°,∴∠ABE=90°﹣60°=30°,∵四邊形ABCD為正方形,∴AD=AB=4,∠ABD=45°,∴DE=4﹣4,∠EBD=∠ABD﹣∠ABE=15°.考點:旋轉(zhuǎn)的性質(zhì);正方形的性質(zhì).22、信號塔的高度約為100米.【分析】延長PQ交直線AB于點M,連接AQ,設PM的長為x米,先由三角函數(shù)得出方程求出PM,再由三角函數(shù)求出QM,得出PQ的長度即可.【詳解】解:延長交直線于點,連接,如圖所示:則,設的長為米,在中,,∴米,∴(米),在中,∵,∴,解得:,在中,∵,∴(米),∴(米);答:信號塔的高度約為100米.【點睛】本題考查解直角三角形的應用、三角函數(shù);由三角函數(shù)得出方程是解決問題的關鍵,注意掌握當兩個直角三角形有公共邊時,先求出這條公共邊的長是解答此類題的一般思路.23、(1)反比例函數(shù)的表達式y(tǒng)=,(2)點P坐標(,0),(3)S△PAB=1.1.【解析】(1)把點A(1,a)代入一次函數(shù)中可得到A點坐標,再把A點坐標代入反比例解析式中即可得到反比例函數(shù)的表達式;(2)作點D關于x軸的對稱點D,連接AD交x軸于點P,此時PA+PB的值最小.由B可知D點坐標,再由待定系數(shù)法求出直線AD的解析式,即可得到點P的坐標;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面積.解:(1)把點A(1,a)代入一次函數(shù)y=﹣x+4,得a=﹣1+4,

解得a=3,

∴A(1,3),

點A(1,3)代入反比例函數(shù)y=,

得k=3,

∴反比例函數(shù)的表達式y(tǒng)=,

(2)把B(3,b)代入y=得,b=1∴點B坐標(3,1);作點B作關于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,

∴D(3,﹣1),設直線AD的解析式為y=mx+n,

把A,D兩點代入得,,

解得m=﹣2,n=1,

∴直線AD的解析式為y=﹣2x+1,令y=0,得x=,

∴點P坐標(,0),(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.點晴:本題是一道一次函數(shù)與反比例函數(shù)的綜合題,并與幾何圖形結合在一起來求有關于最值方面的問題.此類問題的重點是在于通過待定系數(shù)法求出函數(shù)圖象的解析式,再通過函數(shù)解析式反過來求坐標,為接下來求面積做好鋪墊.24、(1)(1,-1);(2)見詳解;(3);(4)圖形的位置是向右平移了3個單位.【分析】(1)先求出點B的坐標,再點關于坐標原點對稱的點的坐標即可;(2)根據(jù)將繞著點順時針旋轉(zhuǎn)的坐

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論