




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,在⊙O中,AB為直徑,點M為AB延長線上的一點,MC與⊙O相切于點C,圓周上有另一點D與點C分居直徑AB兩側,且使得MC=MD=AC,連接AD.現(xiàn)有下列結論:①MD與⊙O相切;②四邊形ACMD是菱形;③AB=MO;④∠ADM=120°,其中正確的結論有()A.4個 B.3個 C.2個 D.1個2.一人乘雪橇沿如圖所示的斜坡(傾斜角為30°)筆直滑下,滑下的距離為24米,則此人下滑的高度為()A.24 B. C.12 D.63.如圖,⊙O是直角△ABC的內切圓,點D,E,F(xiàn)為切點,點P是上任意一點(不與點E,D重合),則∠EPD=()A.30° B.45° C.60° D.75°4.如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點O為圓心,作半圓與AC相切,點P、Q分別是邊BC和半圓上的動點,連接PQ,則PQ長的最大值與最小值的和是()A. B. C. D.5.如圖1,點P從△ABC的頂點A出發(fā),沿A﹣B﹣C勻速運動,到點C停止運動.點P運動時,線段AP的長度y與運動時間x的函數(shù)關系如圖2所示,其中D為曲線部分的最低點,則△ABC的面積是()A.10 B.12 C.20 D.246.方程x(x﹣5)=x的解是()A.x=0
B.x=0或x=5
C.x=6 D.x=0或x=67.如圖,在△ABC中,∠A=90°,sinB=,點D在邊AB上,若AD=AC,則tan∠BCD的值為()A. B. C. D.8.如圖,在正方形中,是的中點,是上一點,,則下列結論正確的有()①②③④∽A.1個 B.2個 C.3個 D.4個9.已知點在同一個函數(shù)的圖象上,這個函數(shù)可能是()A. B. C. D.10.如圖工人師傅砌門時,常用木條EF固定長方形門框ABCD,使其不變形,這樣做的根據(jù)是()A.兩點之間線段最短 B.兩點確定一條直線C.三角形具有穩(wěn)定性 D.長方形的四個角都是直角11.驗光師測得一組關于近視眼鏡的度數(shù)y(度)與鏡片焦距x(米)的對應數(shù)據(jù)如下表.根據(jù)表中數(shù)據(jù),可得y關于x的函數(shù)表達式為近視眼鏡的度數(shù)y(度)2002504005001000鏡片焦距x(米)0.500.400.250.200.10A. B. C. D.12.如圖,過以為直徑的半圓上一點作,交于點,已知,,則的長為()A.7 B.8 C.9 D.10二、填空題(每題4分,共24分)13.如圖,是⊙的直徑,,點、在⊙上,、的延長線交于點,且,,有以下結論:①;②劣弧的長為;③點為的中點;④平分,以上結論一定正確的是______.14.如圖,有一張直徑為1.2米的圓桌,其高度為0.8米,同時有一盞燈距地面2米,圓桌在水平地面上的影子是,∥,和是光線,建立如圖所示的平面直角坐標系,其中點的坐標是.那么點的坐標是_________.15.如圖,△ABC和△A′B′C是兩個完全重合的直角三角板,∠B=30°,斜邊長為10cm.三角板A′B′C繞直角頂點C順時針旋轉,當點A′落在AB邊上時,CA′旋轉所構成的扇形的弧長為_______cm.16.如圖,若菱形ABCD的邊長為2cm,∠A=120°,將菱形ABCD折疊,使點A恰好落在菱形對角線的交點O處,折痕為EF,則EF=_____cm,17.如圖,已知AD∥BC,AC和BD相交于點O,若△AOD的面積為2,△BOC的面積為18,BC=6,則AD的長為_____.18.如圖,正方形ABCD中,M為BC上一點,ME⊥AM,ME交CD于點F,交AD的延長線于點E,若AB=4,BM=2,則的面積為_____________.三、解答題(共78分)19.(8分)一個不透明的布袋中有完全相同的三個小球,把它們分別標號為1,2,3.小林和小華做一個游戲,按照以下方式抽取小球:先從布袋中隨機抽取一個小球,記下標號后放回布袋中攪勻,再從布袋中隨機抽取一個小球,記下標號.若兩次抽取的小球標號之和為奇數(shù),小林贏;若標號之和為偶數(shù),則小華贏.(1)用畫樹狀圖或列表的方法,列出前后兩次取出小球上所標數(shù)字的所有可能情況;(2)請判斷這個游戲是否公平,并說明理由.20.(8分)2018年高一新生開始,某省全面啟動高考綜合改革,實行“3+1+2”的高考選考方案.“3”是指語文、數(shù)學、外語三科必考;“1”是指從物理、歷史兩科中任選一科參加選考,“2”是指從政治、化學、地理、生物四科中任選兩科參加選考(1)“1+2”的選考方案共有多少種?請直接寫出所有可能的選法;(選法與順序無關,例如:“物、政、化”與“物、化、政”屬于同一種選法)(2)高一學生小明和小杰將參加新高考,他們酷愛歷史和生物,兩人約定必選歷史和生物.他們還需要從政治、化學、地理三科中選一科參考,若這三科被選中的機會均等,請用列表或畫樹狀圖的方法,求出他們恰好都選中政治的概率.21.(8分)把一根長為米的鐵絲折成一個矩形,矩形的一邊長為米,面積為S米,(1)求S關于的函數(shù)表達式和的取值范圍(2)為何值時,S最大?最大為多少?22.(10分)如圖,在正方形網格上有以及一條線段.請你以為一條邊.以正方形網格的格點為頂點畫一個,使得與相似,并求出這兩個三角形的相似比.23.(10分)如圖,在平面直角坐標系xOy中,雙曲線與直線y=﹣2x+2交于點A(﹣1,a).⑴求k的值;⑵求該雙曲線與直線y=﹣2x+2另一個交點B的坐標.24.(10分)先化簡,再求值:(1+)÷,其中a=1.25.(12分)一次知識競賽中,有甲、乙、丙三名同學名次并列,但獎品只有兩份,誰應該得到獎品呢?他們決定用抽簽的方式來決定:取張大小、質地相同,分別標有數(shù)字的卡片,充分混勻后倒扣在桌子上,按甲、乙、丙的順序,每人從中任意抽取一張,取后不放回.規(guī)定抽到號或號卡片的人得到獎品.求甲、乙兩人同時得到獎品的概率.26.如圖,Rt△ABO的頂點A是雙曲線與直線y=?x?(k+1)在第二象限的交點,AB⊥x軸于B且S△ABO=.(1)求這兩個函數(shù)的解析式.(2)求直線與雙曲線的兩個交點A,C的坐標和△AOC的面積.
參考答案一、選擇題(每題4分,共48分)1、A【詳解】如圖,連接CO,DO,∵MC與⊙O相切于點C,∴∠MCO=90°,在△MCO與△MDO中,,∴△MCO≌△MDO(SSS),∴∠MCO=∠MDO=90°,∠CMO=∠DMO,∴MD與⊙O相切,故①正確;在△ACM與△ADM中,,∴△ACM≌△ADM(SAS),∴AC=AD,∴MC=MD=AC=AD,∴四邊形ACMD是菱形,故②正確;如圖連接BC,∵AC=MC,∴∠CAB=∠CMO,又∵AB為⊙O的直徑,∴∠ACB=90°,在△ACB與△MCO中,,∴△ACB≌△MCO(SAS),∴AB=MO,故③正確;∵△ACB≌△MCO,∴BC=OC,∴BC=OC=OB,∴∠COB=60°,∵∠MCO=90°,∴∠CMO=30°,又∵四邊形ACMD是菱形,∴∠CMD=60°,∴∠ADM=120°,故④正確;故正確的有4個.故選A.2、C【分析】由題意運用解直角三角形的方法根據(jù)特殊三角函數(shù)進行分析求解即可.【詳解】解:因為斜坡(傾斜角為30°),滑下的距離即斜坡長度為24米,所以下滑的高度為米.故選:C.【點睛】本題考查解直角三角形相關,結合特殊三角函數(shù)進行求解是解題的關鍵,也可利用含30°的直角三角形,其斜邊是30°角所對直角邊的2倍進行分析求解.3、B【分析】連接OE,OD,由切線的性質易證四邊形OECD是矩形,則可得到∠EOD的度數(shù),由圓周角定理進而可求出∠EPD的度數(shù).【詳解】解:連接OE,OD,∵⊙O是直角△ABC的內切圓,點D,E,F(xiàn)為切點,∴OE⊥BC,OD⊥AC,∴∠C=∠OEC=∠ODC=90°,∴四邊形OECD是矩形,∴∠EOD=90°,∴∠EPD=∠EOD=45°,故選:B.【點睛】此題主要考查了圓周角定理以及切線的性質等知識,得出∠EOD=90°是解題關鍵.4、C【解析】如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1﹣OQ1,求出OP1,如圖當Q2在AB邊上時,P2與B重合時,P2Q2最大值=5+3=8,由此不難解決問題.【詳解】如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1,交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1﹣OQ1.∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=20°.∵∠OP1B=20°,∴OP1∥AC.∵AO=OB,∴P1C=P1B,∴OP1AC=4,∴P1Q1最小值為OP1﹣OQ1=1,如圖,當Q2在AB邊上時,P2與B重合時,P2Q2經過圓心,經過圓心的弦最長,P2Q2最大值=5+3=8,∴PQ長的最大值與最小值的和是2.故選C.【點睛】本題考查了切線的性質、三角形中位線定理等知識,解題的關鍵是正確找到點PQ取得最大值、最小值時的位置,屬于中考常考題型.5、B【解析】過點A作AM⊥BC于點M,由題意可知當點P運動到點M時,AP最小,此時長為4,觀察圖象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故選B.【點睛】本題考查了動點問題的函數(shù)圖象,根據(jù)已知和圖象能確定出AB、AC的長,以及點P運動到與BC垂直時最短是解題的關鍵.6、D【分析】先移項,然后利用因式分解法解方程.【詳解】解:x(x﹣5)﹣x=0,x(x﹣5﹣1)=0,x=0或x﹣5﹣1=0,∴x1=0或x2=1.故選:D.【點睛】本題考查了解一元二次方程﹣因式分解法:先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉化為解一元一次方程的問題了(數(shù)學轉化思想).7、C【分析】作DE⊥BC于E,在△CDE中根據(jù)已知條件可求得DE,CE的長,從而求得tan∠BCD.【詳解】解:作DE⊥BC于E.∵∠A=90°,sinB=,設AC=3a=AD,則AB=4a,BC=5a,∴BD=AB-AD=a.∴DE=BD·sinB=a,∴根據(jù)勾股定理,得BE=a,∴CE=BC-BE=a,∴tan∠BCD=故選C.【點睛】本題考查了勾股定理在直角三角形中的運用,考查了直角三角形中三角函數(shù)值的計算,本題中正確求三角函數(shù)值是解題的關鍵.8、B【分析】由題中條件可得△CEF∽△BAE,進而得出對應線段成比例,進而又可得出△ABE∽△AEF,即可得出題中結論.【詳解】∵四邊形ABCD是正方形,
∴∠B=∠C=90°,AB=BC=CD,
∵AE⊥EF,
∴∠AEF=∠B=90°,
∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,
∴∠BAE=∠CEF,
∴△BAE∽△CEF,∴∵是的中點,∴BE=CE∴CE2=AB?CF,∴②正確;
∵BE=CE=BC,∴CF=BE=CD,故③錯誤;∵∴∠BAE≠30°,故①錯誤;設CF=a,則BE=CE=2a,AB=CD=AD=4a,DF=3a,
∴AE=2a,EF=a,AF=5a,∴∴∴△ABE∽△AEF,故④正確.
∴②與④正確.
∴正確結論的個數(shù)有2個.
故選:B.【點睛】此題考查了相似三角形的判定與性質,以及正方形的性質.題目綜合性較強,注意數(shù)形結合思想的應用.9、D【解析】由點的坐標特點,可知函數(shù)圖象關于軸對稱,于是排除選項;再根據(jù)的特點和二次函數(shù)的性質,可知拋物線的開口向下,即,故選項正確.【詳解】點與點關于軸對稱;由于的圖象關于原點對稱,因此選項錯誤;由可知,在對稱軸的右側,隨的增大而減小,對于二次函數(shù)只有時,在對稱軸的右側,隨的增大而減小,選項正確故選.【點睛】考查正比例函數(shù)、反比例函數(shù)、二次函數(shù)的圖象和性質,可以采用排除法,直接法得出答案.10、C【分析】根據(jù)三角形的穩(wěn)定性,可直接選擇.【詳解】加上EF后,原圖形中具有△AEF了,故這種做法根據(jù)的是三角形的穩(wěn)定性.
故選:C.11、A【分析】直接利用已知數(shù)據(jù)可得xy=100,進而得出答案.【詳解】解:由表格中數(shù)據(jù)可得:xy=100,故y關于x的函數(shù)表達式為:.故選A.【點睛】此題主要考查了反比例函數(shù)的應用,正確得出函數(shù)關系式是解題關鍵.12、B【分析】根據(jù)條件得出,解直角三角形求出BD,根據(jù)勾股定理求出CD,代入,即可求出AC的長.【詳解】∵AB為直徑,
∴,
∵CD⊥AB,
∴,
∴,
∴,
∵,BC=6,
∴,∴,∴,∵,∴,∴.
故選:B.【點睛】本題考查了圓周角定理,勾股定理,解直角三角形的應用,能夠正確解直角三角形是解此題的關鍵.二、填空題(每題4分,共24分)13、①②③【分析】①根據(jù)圓內接四邊形的外角等于其內對角可得∠CBE=∠ADE,根據(jù)等邊對等角得出∠CBE=∠E,等量代換即可得到∠ADE=∠E;②根據(jù)圓內接四邊形的外角等于其內對角可得∠A=∠BCE=70,根據(jù)等邊對等角以及三角形內角和定理求出∠AOB=40,再根據(jù)弧長公式計算得出劣弧的長;③根據(jù)圓周角定理得出∠ACD=90,即AC⊥DE,根據(jù)等角對等邊得出AD=AE,根據(jù)等腰三角形三線合一的性質得出∠DAC=∠EAC,再根據(jù)圓周角定理得到點C為的中點;④由DB⊥AE,而∠A≠∠E,得出BD不平分∠ADE.【詳解】①∵ABCD是⊙O的內接四邊形,∴∠CBE=∠ADE,∵CB=CE,∴∠CBE=∠E,∴∠ADE=∠E,故①正確;②∵∠A=∠BCE=70,∴∠AOB=40,∴劣弧的長=,故②正確;③∵AD是⊙O的直徑,∴∠ACD=90,即AC⊥DE,∵∠ADE=∠E,∴AD=AE,∴∠DAC=∠EAC,∴點C為的中點,故③正確;④∵DB⊥AE,而∠A≠∠E,∴BD不平分∠ADE,故④錯誤.所以正確結論是①②③.故答案為①②③.【點睛】本題考查了圓內接四邊形的性質,圓周角定理,弧長的計算,等腰三角形的判定與性質,三角形內角和定理,掌握相關性質及公式是解題的關鍵.14、【分析】先證明△ABC∽△ADE,再根據(jù)相似三角形的性質:相似三角形的對應高的比等于相似比求解即可.【詳解】解:∵BC∥DE,∴△ABC∽△ADE,∴,∵BC=1.2,∴DE=2,∴E(4,0).故答案為:(4,0).【點睛】本題考查了中心投影,相似三角形的判定和性質,準確識圖,熟練掌握相似三角形的對應高的比等于相似比是解題的關鍵.15、【分析】根據(jù)Rt△ABC中的30°角所對的直角邊是斜邊的一半、直角三角形斜邊上的中線等于斜邊的一半以及旋轉的性質推知△AA′C是等邊三角形,所以根據(jù)等邊三角形的性質利用弧長公式來求CA′旋轉所構成的扇形的弧長.【詳解】解:∵在Rt△ABC中,∠B=30°,AB=10cm,∴AC=AB=5cm.根據(jù)旋轉的性質知,A′C=AC,∴A′C=AB=5cm.∴點A′是斜邊AB的中點,∴AA′=AB=5cm.∴AA′=A′C=AC,∴∠A′CA=60°.∴CA′旋轉所構成的扇形的弧長為:(cm).故答案為:.16、【分析】連接AC、BD,根據(jù)題意得出E、F分別為AB、AD的中點,EF是△ABD的中位線,得出EF=BD,再由已知條件根據(jù)三角函數(shù)求出OB,即可求出EF.【詳解】解:連接AC、BD,如圖所示:∵四邊形ABCD是菱形,∴AC⊥BD,∵將菱形ABCD折疊,使點A恰好落在菱形對角線的交點O處,折痕為EF,∴AE=EO,AF=OF,∴E、F分別為AB、AD的中點,∴EF是△ABD的中位線,∴EF=BD,∵菱形ABCD的邊長為2cm,∠A=120°,∴AB=2cm,∠ABC=60°,∴OB=BD,∠ABO=30°,∴OB=AB?cos30°=2×=,∴EF=BD=OB=;故答案為:.【點睛】此題考查菱形的性質,折疊的性質,銳角三角函數(shù),三角形中位線的判定及性質,由折疊得到EF是△ABD的中位線,由此利用銳角三角函數(shù)求出OB的長度達到解決問題的目的.17、1【分析】根據(jù)AD∥BC得出△AOD∽△BOC,然后利用相似三角形的面積之比可求出相似比,再根據(jù)相似比即可求出AD的長度.【詳解】解:∵AD∥BC,∴△AOD∽△BOC,∵△AOD的面積為1,△BOC的面積為18,∴△AOD與△BOC的面積之比為1:9,∴,∵BC=6,∴AD=1.故答案為:1.【點睛】本題主要考查相似三角形的性質,掌握相似三角形的性質是解題的關鍵.18、1【分析】先根據(jù)正方形的性質可得,從而可得,再根據(jù)相似三角形的判定與性質可得,從而可得CF的長,又根據(jù)線段的和差可得DF的長,然后根據(jù)相似三角形的判定與性質可得,從而可得出DE的長,最后根據(jù)直角三角形的面積公式即可得.【詳解】四邊形ABCD是正方形,,即在和中,,即解得又,即,即解得則的面積為故答案為:1.【點睛】本題考查了正方形的性質、相似三角形的判定定理與性質等知識點,熟練掌握相似三角形的判定定理與性質是解題關鍵.三、解答題(共78分)19、(1);(2)不公平,理由見解析【分析】(1)此題需要兩步完成,所以采用樹狀圖法或者采用列表法都比較簡單;使用樹狀圖分析時,一定要做到不重不漏.(2)根據(jù)題意可以分別求得他們獲勝的概率,即可進行判斷.【詳解】解:方法一:(1)由題意畫出樹狀圖所有可能情況如下:;(2)由(1)可得:標號之和分別為2,3,4,3,4,5,4,5,6,,,因為,所以不公平;方法二:(1)由題意列表小林小華123123所有可能情況如下:;(2)由(1)可得:標號之和分別為2,3,4,3,4,5,4,5,6,,,因為,所以不公平.【點睛】本題主要考查了游戲公平性的判斷、用畫樹狀圖或列表的方法解決概率問題;判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.20、(1)共有12種等可能結果,見解析;(2)見解析,他們恰好都選中政治的概率為.【解析】(1)利用樹狀圖可得所有等可能結果;(2)畫樹狀圖展示所有等可能結果,從中找到符合條件的結果數(shù),再根據(jù)概率公式求解可得.【詳解】解:(1)畫樹狀圖如下,由樹狀圖知,共有12種等可能結果;(2)畫樹狀圖如下由樹狀圖知,共有9種等可能結果,其中他們恰好都選中政治的只有1種結果,所以他們恰好都選中政治的概率為.【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出,再從中選出符合事件或的結果數(shù)目,求出概率.21、(1)S=-+2x(0<x<2);(2)x=1時,面積最大,最大為1米2【分析】(1)根據(jù)矩形周長為米,一邊長為x,得出另一邊為2-x,再根據(jù)矩形的面積公式即可得出答案;(2)根據(jù)(1)得出的關系式,利用配方法進行整理,可求出函數(shù)的最大值,從而得出答案.【詳解】解:(1)∵矩形的一邊長為x米,∴另一邊長為2-x米,∴S=x(2-x)=-x2+2x(0<x<2),即S=-x2+2x(0<x<2);(2)根據(jù)(1)得:S=-x2+2x=-(x-1)2+1,∴矩形一邊長為1米時,面積最大為1米2,【點睛】本題考查的是二次函數(shù)的實際應用以及矩形面積的計算公式,關鍵是根據(jù)矩形的面積公式構建二次函數(shù)解決最值問題.22、圖見解析,與的相似比是.【分析】可先選定BC與DE為對應邊,對應邊之比為1:2,據(jù)此來選定點F的位置,相似比亦可得.【詳解】解:如圖,與相似.理由如下:由勾股定理可求得,,BC=2,;,DE=4,,∴,∴∽,相似比是.【點睛】此題主要考查了相似三角形的判定與性質,利用網格得出三角形各邊長度是解題關鍵.23、(1);(2)B(2,-2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 媒介推廣面試題及答案
- 農產品電商的未來發(fā)展方向試題及答案
- 備戰(zhàn)樂理考試2025年試題及答案
- 安全工程師未來發(fā)展前景試題及答案
- 注冊土木工程師考試考生動態(tài)講座試題及答案
- 安全工程師考試中常見的題型試題及答案
- 農業(yè)電商面對市場風險的應對策略試題及答案
- 大學化學考試流程化學習試題及答案
- 山東移動招聘試題及答案
- 土木工程師考試中應注重的學科交叉性試題及答案
- 2025-2030中國聚丙烯三元共聚物行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025年上半年蘇州太倉臨港投資發(fā)展集團限公司公開招聘工作人員易考易錯模擬試題(共500題)試卷后附參考答案
- 工業(yè)自動化控制系統(tǒng)調試與維護題庫
- DZ∕T 0219-2006 滑坡防治工程設計與施工技術規(guī)范(正式版)
- 《光伏發(fā)電工程工程量清單計價規(guī)范》
- 第十二講 建設社會主義生態(tài)文明PPT習概論2023優(yōu)化版教學課件
- 2023年梅毒診療指南
- 挖掘機人員安全教育
- 非煤露天礦山安全確認牌
- GB/T 1470-2005鉛及鉛銻合金板
- 完美日記營銷體系策略深度解析(深度解析完美日記崛起的驅動力)
評論
0/150
提交評論