吉林省長春市南關(guān)區(qū)東北師大附中2022-2023學(xué)年九年級數(shù)學(xué)上冊期末質(zhì)量檢測試題含解析_第1頁
吉林省長春市南關(guān)區(qū)東北師大附中2022-2023學(xué)年九年級數(shù)學(xué)上冊期末質(zhì)量檢測試題含解析_第2頁
吉林省長春市南關(guān)區(qū)東北師大附中2022-2023學(xué)年九年級數(shù)學(xué)上冊期末質(zhì)量檢測試題含解析_第3頁
吉林省長春市南關(guān)區(qū)東北師大附中2022-2023學(xué)年九年級數(shù)學(xué)上冊期末質(zhì)量檢測試題含解析_第4頁
吉林省長春市南關(guān)區(qū)東北師大附中2022-2023學(xué)年九年級數(shù)學(xué)上冊期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,四邊形ABCD和四邊形A′B′C′D′是以點O為位似中心的位似圖形,若OA:OA′=2:3,四邊形ABCD的面積等于4,則四邊形A′B′C′D′的面積為()A.3 B.4 C.6 D.92.某市為了改善城市容貌,綠化環(huán)境,計劃過兩年時間,綠地面積增加44%,這兩年平均每年綠地面積的增長率是()A.19% B.20% C.21% D.22%3.有一個矩形苗圃園,其中一邊靠墻,另外三邊用長為的籬笆圍成.已知墻長為若平行于墻的一邊長不小于則這個苗圃園面積的最大值和最小值分別為()A. B.C. D.4.如圖,AB為⊙O的直徑,C、D是⊙O上的兩點,∠BAC=20°,AD=CD,則∠DAC的度數(shù)是()A.30° B.35° C.45° D.70°5.已知x2+y=3,當(dāng)1≤x≤2時,y的最小值是()A.-1 B.2 C.2.75 D.36.如圖,直線,等腰的直角頂點在上,頂點在上,若,則()A.31° B.45° C.30° D.59°7.如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于A、B兩點,C(m,﹣3)是圖象上的一點,且AC⊥BC,則a的值為()A.2 B. C.3 D.8.某工廠生產(chǎn)的某種產(chǎn)品按質(zhì)量分為10個檔次,第1檔次(最低檔次)的產(chǎn)品一天能生產(chǎn)95件,每件利潤6元,每提高一個檔次,每件利潤增加2元,但一天產(chǎn)量減少5件.若生產(chǎn)的產(chǎn)品一天的總利潤為1120元,且同一天所生產(chǎn)的產(chǎn)品為同一檔次,則該產(chǎn)品的質(zhì)量檔次是()A.6 B.8 C.10 D.129.下列圖案中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.10.如圖,BD是⊙O的直徑,點A、C在⊙O上,,∠AOB=60°,則∠BDC的度數(shù)是()A.60° B.45° C.35° D.30°二、填空題(每小題3分,共24分)11.某氣球內(nèi)充滿了一定量的氣體,當(dāng)溫度不變時,氣球內(nèi)氣體的氣壓是氣體體積的反比例函數(shù),其圖象如圖所示.當(dāng)氣體體積為時,氣壓是__________.12.如圖,一根直立于水平地面上的木桿AB在燈光下形成影子,當(dāng)木桿繞A按逆時針方向旋轉(zhuǎn)直至到達(dá)地面時,影子的長度發(fā)生變化.設(shè)AB垂直于地面時的影長為AC﹙假定AC>AB﹚,影長的最大值為m,最小值為n,那么下列結(jié)論中:①m>AC;②m=AC;③n=AB;④影子的長度先增大后減?。_的結(jié)論序號是_____.﹙直角填寫正確的結(jié)論的序號﹚.13.如圖,在⊙O內(nèi)有折線DABC,點B,C在⊙O上,DA過圓心O,其中OA=8,AB=12,∠A=∠B=60°,則BC=_____.14.若一個正多邊形的每一個外角都等于36°,那么這個正多邊形的中心角為__________度.15.二次函數(shù)y=x2-2x+1的對稱軸方程是x=_______.16.如圖,正方形的頂點分別在軸和軸上,邊的中點在軸上,若反比例函數(shù)的圖象恰好經(jīng)過的中點,則的長為__________.17.已知點P是線段AB的黃金分割點,AP>PB.若AB=2,則AP=_____.18.已知,如圖,,,且,則與__________是位似圖形,位似比為____________.三、解答題(共66分)19.(10分)我國南宋數(shù)學(xué)家楊輝在1275年提出的一個問題:“直田積(矩形面積)八百六十四步(平方步),只云闊(寬)不及長一十二步(寬比長少一十二步),問闊及長各幾步.”其大意是:一矩形田地面積為864平方步,寬比長少12步,問該矩形田地的長和寬各是多少步?請用已學(xué)過的知識求出問題的解.20.(6分)如圖所示,一輛單車放在水平的地面上,車把頭下方處與坐墊下方處在平行于地面的同一水平線上,,之間的距離約為,現(xiàn)測得,與的夾角分別為與,若點到地面的距離為,坐墊中軸處與點的距離為,求點到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,,)21.(6分)已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作DE⊥AC于點E.(1)求證:DE是⊙O的切線.(2)若⊙O的半徑為3cm,∠C=30°,求圖中陰影部分的面積.22.(8分)有一輛寬為的貨車(如圖①),要通過一條拋物線形隧道(如圖②).為確保車輛安全通行,規(guī)定貨車車頂左右兩側(cè)離隧道內(nèi)壁的垂直高度至少為.已知隧道的跨度為,拱高為.(1)若隧道為單車道,貨車高為,該貨車能否安全通行?為什么?(2)若隧道為雙車道,且兩車道之間有的隔離帶,通過計算說明該貨車能夠通行的最大安全限高.23.(8分)已知有一個二次函數(shù)由的圖像與x軸的交點為(-2,0),(4,0),形狀與二次函數(shù)相同,且的圖像頂點在函數(shù)的圖像上(a,b為常數(shù)),則請用含有a的代數(shù)式表示b.24.(8分)如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點坐標(biāo)分別是A(1,1),B(4,1),C(3,3).(1)將△ABC向下平移5個單位后得到△A1B1C1,請畫出△A1B1C1;(2)將△ABC繞原點O逆時針旋轉(zhuǎn)90°后得到△A2B2C2,請畫出△A2B2C2;(3)判斷以O(shè),A1,B為頂點的三角形的形狀.(無須說明理由)25.(10分)如圖①,矩形中,,,將繞點從處開始按順時針方向旋轉(zhuǎn),交邊(或)于點,交邊(或)于點.當(dāng)旋轉(zhuǎn)至處時,的旋轉(zhuǎn)隨即停止.(1)特殊情形:如圖②,發(fā)現(xiàn)當(dāng)過點時,也恰好過點,此時是否與相似?并說明理由;(2)類比探究:如圖③,在旋轉(zhuǎn)過程中,的值是否為定值?若是,請求出該定值;若不是,請說明理由;(3)拓展延伸:設(shè)時,的面積為,試用含的代數(shù)式表示;①在旋轉(zhuǎn)過程中,若時,求對應(yīng)的的面積;②在旋轉(zhuǎn)過程中,當(dāng)?shù)拿娣e為4.2時,求對應(yīng)的的值.26.(10分)拋物線y=-2x2+8x-1.(1)用配方法求頂點坐標(biāo),對稱軸;(2)x取何值時,y隨x的增大而減???

參考答案一、選擇題(每小題3分,共30分)1、D【分析】利用位似的性質(zhì)得到AD:A′D′=OA:OA′=2:3,再利用相似多邊形的性質(zhì)得到得到四邊形A′B′C′D′的面積.【詳解】解:∵四邊形ABCD和四邊形A′B′C′D′是以點O為位似中心的位似圖形,∴AD:A′D′=OA:OA′=2:3,∴四邊形ABCD的面積:四邊形A′B′C′D′的面積=4:1,而四邊形ABCD的面積等于4,∴四邊形A′B′C′D′的面積為1.故選:D.【點睛】本題考查的是位似變換的性質(zhì),掌握位似圖形與相似圖形的關(guān)系、相似多邊形的性質(zhì)是解題的關(guān)鍵.2、B【解析】試題分析:設(shè)這兩年平均每年綠地面積的增長率是x,則過一年時間的綠地面積為1+x,過兩年時間的綠地面積為(1+x)2,根據(jù)綠地面積增加44%即可列方程求解.設(shè)這兩年平均每年綠地面積的增長率是x,由題意得(1+x)2=1+44%解得x1=0.2,x2=-2.2(舍)故選B.考點:一元二次方程的應(yīng)用點評:提升對實際問題的理解能力是數(shù)學(xué)學(xué)習(xí)的指導(dǎo)思想,因而此類問題是中考的熱點,在各種題型中均有出現(xiàn),一般難度不大,需特別注意.3、C【分析】設(shè)垂直于墻面的長為xm,則平行于墻面的長為(20-2x)m,這個苗圃園的面積為ym2,根據(jù)二次函數(shù)的圖象及性質(zhì)求最值即可.【詳解】解:設(shè)垂直于墻面的長為xm,則平行于墻面的長為(20-2x)m,這個苗圃園的面積為ym2由題意可得y=x(20-2x)=-2(x-5)2+50,且8≤20-2x≤15解得:2.5≤x≤6∵-2<0,二次函數(shù)圖象的對稱軸為直線x=5∴當(dāng)x=5時,y取最大值,最大值為50;當(dāng)x=2.5時,y取最小值,最小值為37.5;故選C.【點睛】此題考查的是二次函數(shù)的應(yīng)用,掌握二次函數(shù)的圖象及性質(zhì)是解題關(guān)鍵.4、B【分析】連接BD,如圖,利用圓周角定理得到∠ADB=90°,∠DBC=∠BAC=20°,則∠ADC=110°,然后根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和計算∠DAC的度數(shù).【詳解】解:連接BD,如圖,∵AB為⊙O的直徑,∴∠ADB=90°,∵∠DBC=∠BAC=20°,∴∠ADC=90°+20°=110°,∵DA=DC,∴∠DAC=∠DCA,∴∠DAC=(180°﹣110°)=35°.故選:B.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.5、A【分析】移項后變成求二次函數(shù)y=-x2+2的最小值,再根據(jù)二次函數(shù)的圖像性質(zhì)進(jìn)行答題.【詳解】解:∵x2+y=2,∴y=-x2+2.∴該拋物線的開口方向向下,且其頂點坐標(biāo)是(0,2).∵2≤x≤2,∴離對稱軸越遠(yuǎn)的點所對應(yīng)的函數(shù)值越小,∴當(dāng)x=2時,y有最小值為-4+2=-2.故選:A.【點睛】本題考查了二次函數(shù)的最值.求二次函數(shù)的最值有常見的兩種方法,第一種是配方法,第二種是直接套用頂點的縱坐標(biāo)求,熟練掌握二次函數(shù)的圖像及性質(zhì)是解決本題的關(guān)鍵.6、A【分析】過點B作BD//l1,,再由平行線的性質(zhì)即可得出結(jié)論.【詳解】解:過點B作BD//l1,則∠α=∠CBD.

∵,

∴BD//,

∴∠β=∠DBA,

∵∠CBD+∠DBA=45°,

∴∠α+∠β=45°,∵∴∠α=45°-∠β=31°.

故選A.【點睛】本題考查的是平行線的性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出平行線是解答此題的關(guān)鍵.7、D【分析】在直角三角形ABC中,利用勾股定理AD2+DC2+CD2+BD2=AB2,即m2﹣m(x1+x2)+18+x1x2=0;然后根據(jù)根與系數(shù)的關(guān)系即可求得a的值.【詳解】過點C作CD⊥AB于點D.∵AC⊥BC,∴AD2+DC2+CD2+BD2=AB2,設(shè)ax2+bx+c=0的兩根分別為x1與x2(x1≤x2),∴A(x1,0),B(x2,0).依題意有(x1﹣m)2+9+(x2﹣m)2+9=(x1﹣x2)2,化簡得:m2﹣m(x1+x2)+9+x1x2=0,∴m2m+90,∴am2+bn+c=﹣9a.∵(m,﹣3)是圖象上的一點,∴am2+bm+c=﹣3,∴﹣9a=﹣3,∴a.故選:D.【點睛】本題是二次函數(shù)的綜合試題,考查了二次函數(shù)的性質(zhì)和圖象,解答本題的關(guān)鍵是注意數(shù)形結(jié)合思想.8、A【分析】設(shè)該產(chǎn)品的質(zhì)量檔次是x檔,則每天的產(chǎn)量為[95﹣5(x﹣1)]件,每件的利潤是[6+2(x﹣1)]元,根據(jù)總利潤=單件利潤×銷售數(shù)量,即可得出關(guān)于x的一元二次方程,解之取其小于等于10的值即可得出結(jié)論.【詳解】設(shè)該產(chǎn)品的質(zhì)量檔次是x檔,則每天的產(chǎn)量為[95﹣5(x﹣1)]件,每件的利潤是[6+2(x﹣1)]元,根據(jù)題意得:[6+2(x﹣1)][95﹣5(x﹣1)]=1120,整理得:x2﹣18x+72=0,解得:x1=6,x2=12(舍去).故選A.【點睛】本題考查了一元二次方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.9、B【解析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;

B、是軸對稱圖形,也是中心對稱圖形,故此選項正確;

C、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;

D、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤.

故選B.【點睛】考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.10、D【解析】試題分析:直接根據(jù)圓周角定理求解.連結(jié)OC,如圖,∵=,∴∠BDC=∠BOC=∠AOB=×60°=30°.故選D.考點:圓周角定理.二、填空題(每小題3分,共24分)11、1【解析】設(shè)出反比例函數(shù)解析式,把A坐標(biāo)代入可得函數(shù)解析式,再將V=1代入即可求得結(jié)果.【詳解】解:設(shè),代入得:,解得:,故,當(dāng)氣體體積為,即V=1時,(kPa),故答案為:1.【點睛】本題考查了反比例函數(shù)的實際應(yīng)用,關(guān)鍵是建立函數(shù)關(guān)系式,并會運用函數(shù)關(guān)系式解答題目的問題.12、①③④【分析】由當(dāng)AB與光線BC垂直時,m最大即可判斷①②,由最小值為AB與底面重合可判斷③,點光源固定,當(dāng)線段AB旋轉(zhuǎn)時,影長將隨物高擋住光線的不同位置發(fā)生變化過程可判斷④.【詳解】當(dāng)木桿繞點A按逆時針方向旋轉(zhuǎn)時,如圖所示當(dāng)AB與光線BC垂直時,m最大,則m>AC,①成立;

①成立,那么②不成立;

最小值為AB與底面重合,故n=AB,故③成立;

由上可知,影子的長度先增大后減小,④成立.

故答案為:①③④.13、1【分析】作OE⊥BC于E,連接OB,根據(jù)∠A、∠B的度數(shù)易證得△ABD是等邊三角形,由此可求出OD、BD的長,設(shè)垂足為E,在Rt△ODE中,根據(jù)OD的長及∠ODE的度數(shù)易求得DE的長,進(jìn)而可求出BE的長,由垂徑定理知BC=2BE即可得出答案.【詳解】作OE⊥BC于E,連接OB.∵∠A=∠B=60°,∴∠ADB=60°,∴△ADB為等邊三角形,∴BD=AD=AB=12,∵OA=8,∴OD=4,又∵∠ADB=60°,∴DE=OD=2,∴BE=12﹣2=10,由垂徑定理得BC=2BE=1故答案為:1.【點睛】本題考查了圓中的弦長計算,熟練掌握垂徑定理,作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.14、1【分析】根據(jù)題意首先由多邊形外角和定理求出正多邊形的邊數(shù)n,再由正多邊形的中心角=,即可得出答案.【詳解】解:∵正多邊形的每一個外角都等于1°,∴正多邊形的邊數(shù)為:,∴這個正多邊形的中心角為:.故答案為:1.【點睛】本題考查正多邊形的性質(zhì)和多邊形外角和定理以及正多邊形的中心角的計算方法,熟練掌握正多邊形的性質(zhì)并根據(jù)題意求出正多邊形的邊數(shù)是解決問題的關(guān)鍵.15、1【分析】利用公式法可求二次函數(shù)y=x2-2x+1的對稱軸.也可用配方法.【詳解】∵-=-=1,∴x=1.故答案為1【點睛】本題考查二次函數(shù)基本性質(zhì)中的對稱軸公式;也可用配方法解決.16、【分析】過點E作EG⊥x軸于G,設(shè)點E的坐標(biāo)為(),根據(jù)正方形的性質(zhì)和“一線三等角”證出△CEG≌△FCO,可得EG=CO=,CG=FO=OG-OC=,然后利用等角的余角相等,可得∠BAF=∠FCO,先求出tan∠BAF,即可求出tan∠FCO,即可求出x的值,從而求出OF和OC,根據(jù)勾股定理和正方形的性質(zhì)即可求出CF、BF、AB、AF,從而求出OA.【詳解】解:過點E作EG⊥x軸于G,如下圖所示

∵反比例函數(shù)的圖象過點,設(shè)點E的坐標(biāo)為()∴OG=x,EG=∵四邊形ABCD是正方形,∴AB=BC=CD,∠ABC=∠BCD=90°∵點E、F分別是CD、BC的中點∴EC=CD=BC=CF∵∠CEG+∠ECG=90°,∠FCO+∠ECG=90°,∴∠CEG=∠FCO在△CEG和△FCO中∴△CEG≌△FCO∴EG=CO=,CG=FO=OG-OC=∵∠BAF+∠AFB=90°,∠FCO+∠COF=90°,∠AFB=∠COF∴∠BAF=∠FCO在Rt△BAF中,tan∠BAF=∴tan∠FCO=tan∠BAF=在Rt△FCO中,tan∠FCO=解得:則OF==,OC=根據(jù)勾股定理可得:CF=∴BF=CF=,AB=BC=2CF=,根據(jù)勾股定理可得:AF=∴OA=OF+AF=故答案為:.【點睛】此題考查的是反比例函數(shù)、正方形的性質(zhì)、全等三角形的判定及性質(zhì)、銳角三角函數(shù)和勾股定理,掌握利用反比例函數(shù)解析式設(shè)圖象上點坐標(biāo)、作輔助線構(gòu)造全等三角形和等角的銳角三角函數(shù)相等是解決此題的關(guān)鍵.17、-1【詳解】解:如果一點為線段的黃金分割點,那么被分割的較短的邊比較大的邊等于較大的邊比上這一線段的長=≈0.618.∵AB=2,AP﹥BP,∴AP:AB=×2=-1.故答案是:-118、7:1【分析】由平行易得△ABC∽△A′B′C′,且兩三角形位似,位似比等于OA′:OA.【詳解】解:∵A′B′∥AB,B′C′∥BC,

∴△ABC∽△A′B′C′,,,∠A′B′O=∠ABO,∠C′B′O=∠CBO,,∠A′B′C′=∠ABC,

∴△ABC∽△A′B′C′,∴△ABC與△A′B′C′是位似圖形,

位似比=AB:A′B′=OA:OA′=(1+3):1=7:1.【點睛】本題考查了相似圖形交于一點的圖形的位似圖形,位似比等于對應(yīng)邊的比.三、解答題(共66分)19、矩形的闊為24步,長為36步.【解析】設(shè)闊為x步,則長為(x+12)步,根據(jù)面積為864,即可得出方程求解即可.【詳解】設(shè)闊為x步,則長為(x+12)步,由題意可得:x(x+12)=864,解得:x1=24,x2=﹣36(舍),24+12=36,答:矩形的闊為24步,長為36步.【點睛】本題考查了一元二次方程的應(yīng)用,為面積問題,掌握好面積公式即可進(jìn)行正確解答;矩形面積=矩形的長×矩形的寬.20、66.7cm【分析】過點C作CH⊥AB于點H,過點E作EF垂直于AB延長線于點F,設(shè)CH=x,則AH=CH=x,BH=CHcot68°=0.4x,由AB=49知x+0.4x=49,解之求得CH的長,再由EF=BEsin68°=3.72根據(jù)點E到地面的距離為CH+CD+EF可得答案.【詳解】如圖,過點C作CH⊥AB于點H,過點E作EF垂直于AB延長線于點F,設(shè)

CH=x,則

AH=CH=x,BH=CHcot68°=0.4x,由

AB=49

x+0.4x=49,解得:x=35,∵BE=4,∴EF=BEsin68°=3.72,則點E到地面的距離為

CH+CD+EF=35+28+3.72≈66.7(cm),答:點E到地面的距離約為

66.7cm.【點睛】本題考查解直角三角形的實際應(yīng)用,構(gòu)造直角三角形,利用已知角度的三角函數(shù)值是解題的關(guān)鍵.21、(1)見解析;(1)(3π﹣)cm1【分析】(1)由等腰三角形的性質(zhì)證出∠ODB=∠C.得出OD∥AC.由已知條件證出DE⊥OD,即可得出結(jié)論;(1)由垂徑定理求出OF,由勾股定理得出DF,求出BD,得出△BOD的面積,再求出扇形BOD的面積,即可得出結(jié)果.【詳解】(1)連接OD,如圖1所示:∵OD=OB,∴∠B=∠ODB.∵AB=AC,∴∠B=∠C.∴∠ODB=∠C.∴OD∥AC.∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切線.(1)過O作OF⊥BD于F,如圖1所示:∵∠C=30°,AB=AC,OB=OD,∴∠OBD=∠ODB=∠C=30°,∴∠BOD=110°,在Rt△DFO中,∠FDO=30°,∴OF=OD=cm,∴DF==cm,∴BD=1DF=3cm,∴S△BOD=×BD×OF=×3×=cm1,S扇形BOD==3πcm1,∴S陰=S扇形BOD﹣S△BOD==(3π﹣)cm1.【點睛】本題考查了切線的判定、等腰三角形的性質(zhì)、平行線的判定與性質(zhì)、勾股定理、三角形和扇形面積的計算等知識;熟練掌握切線的判定,由垂徑定理和勾股定理求出OF和DF是解決問題(1)的關(guān)鍵.22、(1)貨車能安全通行,理由見解析;(2)最大安全限高為2.29米【分析】(1)根據(jù)跨度求出點B的坐標(biāo),然后設(shè)拋物線頂點式形式y(tǒng)=ax2+4,然后把點B的坐標(biāo)代入求出a的值,即可得解;

(2)根據(jù)車的寬度為2,求出x=2.2時的函數(shù)值,再根據(jù)限高求出貨車的最大限制高度即可.【詳解】(1)貨車能安全通行.∵隧道跨度為8米,隧道的頂端坐標(biāo)為(O,4),

∴A、B關(guān)于y軸對稱,

∴OA=OB=AB=×8=4,

∴點B的坐標(biāo)為(4,0),

設(shè)拋物線頂點式形式y(tǒng)=ax2+4,

把點B坐標(biāo)代入得,16a+4=0,

解得a=-,

所以,拋物線解析式為y=-x2+4(-4≤x≤4);由可得,.∵,∴貨車能夠安全通行.答:貨車能夠安全通行.

(2)當(dāng)時,=2.1.∵,∴貨車能夠通行的最大安全限高為2.29米.答:貨車能夠通行的最大安全限高為2.29米.【點睛】本題考查了二次函數(shù)的應(yīng)用,主要利用了二次函數(shù)的圖象的對稱性,待定系數(shù)法求二次函數(shù)解析式,以及二次函數(shù)圖象上點的坐標(biāo)特征,比較簡單.23、或【解析】根據(jù)圖象與x軸兩交點確定對稱軸,再根據(jù)圖象頂點在函數(shù)的圖像上可得頂點坐標(biāo),設(shè)頂點式求拋物線的解析式.【詳解】解:∵y1圖象與x軸的交點坐標(biāo)為(-2,0),(4,0),可得圖象對稱軸為直線x=1,∵y1圖象頂點在函數(shù)的圖象上,∴當(dāng)x=1時,y=2+b,∴y1圖象頂點坐標(biāo)為(1,2+b)∵y1圖象與形狀相同,∴設(shè)y1=a(x-1)2+2+b,或y1=-a(x-1)2+2+b,將(-2,0)代入得,0=9a+2+b,或0=-9a+2+b,∴或【點睛】本題考查二次函數(shù)圖象的特征,確定頂點坐標(biāo)后設(shè)頂點式求解析式是解答此題的重要思路.24、(1)畫圖見解析;(2)畫圖見解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論