江蘇省江陰初級中學(xué)2022年數(shù)學(xué)九年級上冊期末監(jiān)測模擬試題含解析_第1頁
江蘇省江陰初級中學(xué)2022年數(shù)學(xué)九年級上冊期末監(jiān)測模擬試題含解析_第2頁
江蘇省江陰初級中學(xué)2022年數(shù)學(xué)九年級上冊期末監(jiān)測模擬試題含解析_第3頁
江蘇省江陰初級中學(xué)2022年數(shù)學(xué)九年級上冊期末監(jiān)測模擬試題含解析_第4頁
江蘇省江陰初級中學(xué)2022年數(shù)學(xué)九年級上冊期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.下列事件中,必然事件是()A.任意擲一枚均勻的硬幣,正面朝上B.從一副撲克牌中,隨意抽出一張是大王C.通常情況下,拋出的籃球會下落D.三角形內(nèi)角和為360°2.下列事件是必然事件的是()A.通常加熱到100℃,水沸騰B.拋一枚硬幣,正面朝上C.明天會下雨D.經(jīng)過城市中某一有交通信號燈的路口,恰好遇到紅燈3.我校小偉同學(xué)酷愛健身,一天去爬山鍛煉,在出發(fā)點C處測得山頂部A的仰角為30度,在爬山過程中,每一段平路(CD、EF、GH)與水平線平行,每一段上坡路(DE、FG、HA)與水平線的夾角都是45度,在山的另一邊有一點B(B、C、D同一水平線上),斜坡AB的坡度為2:1,且AB長為900,其中小偉走平路的速度為65.7米/分,走上坡路的速度為42.3米/分.則小偉從C出發(fā)到坡頂A的時間為()(圖中所有點在同一平面內(nèi)≈1.41,≈1.73)A.60分鐘 B.70分鐘 C.80分鐘 D.90分鐘4.把拋物線先向左平移1個單位,再向上平移個單位后,得拋物線,則的值是()A.-2 B.2 C.8 D.145.如圖,四邊形ABCD是矩形,點E在線段CB的延長線上,連接DE交AB于點F,∠AED=2∠CED,點G為DF的中點.若BE=1,AG=3,則AB的長是()A. B.2 C. D.6.用配方法解一元二次方程時,下列變形正確的是().A. B. C. D.7.如圖,數(shù)軸上的點,,,表示的數(shù)分別為,,,,從,,,四點中任意取兩點,所取兩點之間的距離為的概率是()A. B. C. D.8.方程是關(guān)于的一元二次方程,則的值不能是()A.0 B. C. D.9.下列事件中,必然事件是()A.一定是正數(shù)B.八邊形的外角和等于C.明天是晴天D.中秋節(jié)晚上能看到月亮10.要使方程是關(guān)于x的一元二次方程,則()A.a(chǎn)≠0 B.a(chǎn)≠3C.a(chǎn)≠3且b≠-1 D.a(chǎn)≠3且b≠-1且c≠0二、填空題(每小題3分,共24分)11.已知:如圖,在菱形ABCD中,F(xiàn)為邊AB的中點,DF與對角線AC交于點G,過G作GE⊥AD于點E,若AB=2,且∠1=∠2,則下列結(jié)論中一定成立的是_____(把所有正確結(jié)論的序號都填在橫線上).①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四邊形BFGC=﹣1.12.方程x(x﹣2)﹣x+2=0的正根為_____.13.已知,則_____.14.如圖,內(nèi)接于,則的半徑為__________.15.如圖,五邊形ABCDE是⊙O的內(nèi)接正五邊形,AF是⊙O的直徑,則∠BDF的度數(shù)是___________°.16.某商品原售價300元,經(jīng)過連續(xù)兩次降價后售價為260元,設(shè)平均每次降價的百分率為x,則滿足x的方程是______.17.從一批節(jié)能燈中隨機抽取40只進行檢查,發(fā)現(xiàn)次品2只,則在這批節(jié)能燈中隨機抽取一只是次品的概率為_______.18.如圖,在矩形ABCD中,點E是邊BC的中點,AE⊥BD,垂足為F,則tan∠BDE的值是_____三、解答題(共66分)19.(10分)已知二次函數(shù)與軸交于、(在的左側(cè))與軸交于點,連接、.(1)如圖1,點是直線上方拋物線上一點,當面積最大時,點分別為軸上的動點,連接、、,求的周長最小值;(2)如圖2,點關(guān)于軸的對稱點為點,將拋物線沿射線的方向平移得到新的拋物線,使得交軸于點(在的左側(cè)).將繞點順時針旋轉(zhuǎn)至.拋物線的對稱軸上有—動點,坐標系內(nèi)是否存在一點,使得以、、、為頂點的四邊形是菱形,若存在,請直接寫出點的坐標;若不存在,請說明理由.20.(6分)如圖,拋物線y=-x2+bx+c與x軸相交于A(-1,0),B(5,0)兩點.(1)求拋物線的解析式;(2)在第二象限內(nèi)取一點C,作CD垂直x軸于點D,鏈接AC,且AD=5,CD=8,將Rt△ACD沿x軸向右平移m個單位,當點C落在拋物線上時,求m的值;(3)在(2)的條件下,當點C第一次落在拋物線上記為點E,點P是拋物線對稱軸上一點.試探究:在拋物線上是否存在點Q,使以點B、E、P、Q為頂點的四邊形是平行四邊形?若存在,請出點Q的坐標;若不存在,請說明理由.21.(6分)如圖,為的直徑,為上的兩條弦,且于點,,交延長線于點,.(1)求的度數(shù);(2)求陰影部分的面積22.(8分)如圖,在平面直角坐標xOy中,正比例函數(shù)y=kx的圖象與反比例函數(shù)y=的圖象都經(jīng)過點A(2,﹣2).(1)分別求這兩個函數(shù)的表達式;(2)將直線OA向上平移3個單位長度后與y軸交于點B,與反比例函數(shù)圖象在第四象限內(nèi)的交點為C,連接AB,AC,求點C的坐標及△ABC的面積.23.(8分)近段時間成都空氣質(zhì)量明顯下降,市場上的空氣凈化器再次成為熱銷,某商店經(jīng)銷--種空氣凈化器,每臺凈化器的成本價為元,經(jīng)過一段時間的銷售發(fā)現(xiàn),每月的銷售量臺與銷售單價(元)的關(guān)系為.(1)該商店每月的利潤為元,寫出利潤與銷售單價的函數(shù)關(guān)系式;(2)若要使每月的利潤為元,銷售單價應(yīng)定為多少元?(3)商店要求銷售單價不低于元,也不高于元,那么該商店每月的最高利潤和最低利潤分別為多少?24.(8分)如圖,一次函數(shù)與反比例函數(shù)的圖象交于,點兩點,交軸于點.(1)求、的值.(2)請根據(jù)圖象直接寫出不等式的解集.(3)軸上是否存在一點,使得以、、三點為頂點的三角形是為腰的等腰三角形,若存在,請直接寫出符合條件的點的坐標,若不存在,請說明理由.25.(10分)如圖,AB=AC,CD⊥AB于點D,點O是∠BAC的平分線上一點⊙O與AB相切于點M,與CD相切于點N(1)求證:∠AOC=135°(2)若NC=3,BC=,求DM的長26.(10分)我市某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為40元,若銷售價為60元,每天可售出20件,為迎接“雙十一”,專賣店決定采取適當?shù)慕祪r措施,以擴大銷售量,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件設(shè)每件童裝降價x元時,平均每天可盈利y元.寫出y與x的函數(shù)關(guān)系式;當該專賣店每件童裝降價多少元時,平均每天盈利400元?該專賣店要想平均每天盈利600元,可能嗎?請說明理由.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.【詳解】任意擲一枚均勻的硬幣,正面朝上是隨機事件;從一副撲克牌中,隨意抽出一張是大王是隨機事件;通常情況下,拋出的籃球會下落是必然事件;三角形內(nèi)角和為360°是不可能事件,故選C.【點睛】本題考查隨機事件.2、A【解析】解:A.通常加熱到100℃,水沸騰,是必然事件,故A選項符合題意;B.拋一枚硬幣,正面朝上,是隨機事件,故B選項不符合題意;C.明天會下雨,是隨機事件,故C選項不符合題意;D.經(jīng)過城市中某一有交通信號燈的路口,恰好遇到紅燈,是隨機事件,故D選項不符合題意.故選A.【點睛】解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件;不可能事件是指在一定條件下,一定不發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、C【分析】如圖,作AP⊥BC于P,延長AH交BC于Q,延長EF交AQ于T.想辦法求出AQ、CQ即可解決問題.【詳解】解:如圖,作AP⊥BC于P,延長AH交BC于Q,延長EF交AQ于T.由題意:=2,AQ=AH+FG+DE,CQ=CD+EF+GH,∠AQP=45°,∵∠APB=90°,AB=900,∴PB=900,PA=1800,∵∠PQA=∠PAQ=45°,∴PA=PQ=1800,AQ=PA=1800,∵∠C=30°,∴PC=PA=1800,∴CQ=1800﹣1800,∴小偉從C出發(fā)到坡頂A的時間=≈80(分鐘),故選:C.【點睛】本題考查了解直角三角形的應(yīng)用,熟練掌握并靈活運用是解題的關(guān)鍵.4、B【分析】將改寫成頂點式,然后按照題意將進行平移,寫出其平移后的解析式,從而求解.【詳解】解:由題意可知拋物線先向左平移1個單位,再向上平移個單位∴∴n=2故選:B【點睛】本題考查了二次函數(shù)圖象與幾何變換,利用頂點坐標的變化確定函數(shù)圖象的變化可以使求解更加簡便.5、B【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得AG=DG,進而得到得∠ADG=∠DAG,再結(jié)合兩直線平行,內(nèi)錯角相等可得∠ADG=∠CED,再根據(jù)三角形外角定理∠AGE=2∠ADG,從而得到∠AED=∠AGE,再得到AE=AG,然后利用勾股定理列式計算即可得解.【詳解】解:∵四邊形ABCD是矩形,點G是DF的中點,∴AG=DG,∴∠ADG=∠DAG,∵AD∥BC,∴∠ADG=∠CED,∴∠AGE=∠ADG+∠DAG=2∠CED,∵∠AED=2∠CED,∴∠AED=∠AGE,∴AE=AG=3,在Rt△ABE中,,故選:B.【點睛】本題考查了矩形的性質(zhì),等邊對等角的性質(zhì),等角對等邊的性質(zhì),以及勾股定理的應(yīng)用,求出AE=AG是解題的關(guān)鍵.6、D【分析】根據(jù)配方法的原理,湊成完全平方式即可.【詳解】解:,,,故選D.【點睛】本題主要考查配方法的掌握,關(guān)鍵在于一次項的系數(shù)等于2倍的二次項系數(shù)和常數(shù)項的乘積.7、D【分析】利用樹狀圖求出可能結(jié)果即可解答.【詳解】解:畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中所取兩點之間的距離為2的結(jié)果數(shù)為4,所取兩點之間的距離為2的概率==.故選D.【點睛】本題考查畫樹狀圖或列表法求概率,掌握畫樹狀圖的方法是解題關(guān)鍵.8、C【詳解】解:是關(guān)于的一元二次方程,則解得m≠故選C.【點睛】本題考查一元二次方程的概念,注意二次項系數(shù)不能為零.9、B【分析】根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.【詳解】A、a2一定是非負數(shù),則a2一定是正數(shù)是隨機事件;B、八邊形的外角和等于360°是必然事件;C、明天是晴天是隨機事件;D、中秋節(jié)晚上能看到月亮是隨機事件;故選B.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.10、B【分析】根據(jù)一元二次方程的定義選出正確選項.【詳解】解:∵一元二次方程二次項系數(shù)不能為零,∴,即.故選:B.【點睛】本題考查一元二次方程的定義,解題的關(guān)鍵是掌握一元二次方程的定義.二、填空題(每小題3分,共24分)11、①②③【分析】①由四邊形ABCD是菱形,得出對角線平分對角,求得∠GAD=∠2,得出AG=GD,AE=ED,由SAS證得△AFG≌△AEG,得出∠AFG=∠AEG=90°,即可得出①正確;②由DF⊥AB,F(xiàn)為邊AB的中點,證得AD=BD,證出△ABD為等邊三角形,得出∠BAC=∠1=∠2=30°,由AC=2AB?cos∠BAC,AG,求出AC,AG,即可得出②正確;③由勾股定理求出DF,由GE=tan∠2?ED求出GE,即可得出③正確;④由S四邊形BFGC=S△ABC﹣S△AGF求出數(shù)值,即可得出④不正確.【詳解】∵四邊形ABCD是菱形,∴∠FAG=∠EAG,AB=AD,BC∥AD,∴∠1=∠GAD.∵∠1=∠2,∴∠GAD=∠2,∴AG=GD.∵GE⊥AD,∴GE垂直平分AD,∴AE=ED.∵F為邊AB的中點,∴AF=AE,在△AFG和△AEG中,∵,∴△AFG≌△AEG(SAS),∴∠AFG=∠AEG=90°,∴DF⊥AB,∴①正確;連接BD交AC于點O.∵DF⊥AB,F(xiàn)為邊AB的中點,∴AFAB=1,AD=BD.∵AB=AD,∴AD=BD=AB,∴△ABD為等邊三角形,∴∠BAD=∠BCD=60°,∴∠BAC=∠1=∠2=30°,∴AC=2AO=2AB?cos∠BAC=2×22,AG,∴CG=AC﹣AG=2,∴CG=2GA,∴②正確;∵GE垂直平分AD,∴EDAD=1,由勾股定理得:DF,GE=tan∠2?ED=tan30°×1,∴DF+GECG,∴③正確;∵∠BAC=∠1=30°,∴△ABC的邊AC上的高等于AB的一半,即為1,F(xiàn)GAG,S四邊形BFGC=S△ABC﹣S△AGF211,∴④不正確.故答案為:①②③.【點睛】本題考查了菱形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、三角函數(shù)、線段垂直平分線的性質(zhì)、含30°角的直角三角形的性質(zhì)等知識;本題綜合性強,有一定難度.12、x=1或x=2【分析】利用提取公因式法解方程即可得答案.【詳解】∵x(x﹣2)﹣(x﹣2)=0,∴(x﹣2)(x﹣1)=0,∴x﹣2=0或x﹣1=0,解得:x=2或x=1,故答案為:x=1或x=2【點睛】本題考查解一元二次方程,一元二次方程的常用方法有:直接開平方法、配方法、公式法、因式分解法等,熟練掌握并靈活運用適當?shù)姆椒ㄊ墙忸}關(guān)鍵.13、【分析】由已知可得x、y的關(guān)系,然后代入所求式子計算即可.【詳解】解:∵,∴,∴.故答案為:.【點睛】本題考查了比例的性質(zhì)和代數(shù)式求值,屬于基本題型,掌握求解的方法是關(guān)鍵.14、2【分析】連接OA、OB,求出∠AOB=得到△ABC是等邊三角形,即可得到半徑OA=AB=2.【詳解】連接OA、OB,∵,∴∠AOB=,∵OA=OB,∴△ABC是等邊三角形,∴OA=AB=2,故答案為:2.【點睛】此題考查圓周角定理,同弧所對的圓周角等于圓心角的一半.15、1【分析】連接AD,根據(jù)圓周角定理得到∠ADF=90°,根據(jù)五邊形的內(nèi)角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圓周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到結(jié)論.【詳解】連接AD,∵AF是⊙O的直徑,∴∠ADF=90°,∵五邊形ABCDE是⊙O的內(nèi)接正五邊形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=1°,故答案為1.【點睛】本題考查正多邊形與圓,圓周角定理等知識,解題的關(guān)鍵靈活運用所學(xué)知識解決問題.16、.【分析】根據(jù)降價后的售價=降價前的售價×(1-平均每次降價的百分率),可得降價一次后的售價是,降價一次后的售價是,再根據(jù)經(jīng)過連續(xù)兩次降價后售價為260元即得方程.【詳解】解:由題意可列方程為故答案為:.【點睛】本題考查一元二次方程的實際應(yīng)用,增長率問題,解題的關(guān)鍵是讀懂題意,找到等量關(guān)系,正確列出方程,要注意增長的基礎(chǔ).17、【分析】利用概率公式求解可得.【詳解】解:在這批節(jié)能燈中隨機抽取一只是次品的概率為=,故答案為:.【點睛】本題考查概率公式,熟練掌握計算法則是解題關(guān)鍵.18、【解析】證明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的對稱性得:AE=DE,得出EF=DE,設(shè)EF=x,則DE=3x,由勾股定理求出DF==2x,再由三角函數(shù)定義即可得出答案.【詳解】解:∵四邊形ABCD是矩形,

∴AD=BC,AD∥BC,

∵點E是邊BC的中點,

∴BE=BC=AD,

∴△BEF∽△DAF,∴∴EF=AF,

∴EF=AE,

∵點E是邊BC的中點,

∴由矩形的對稱性得:AE=DE,

∴EF=DE,設(shè)EF=x,則DE=3x,

∴DF==2x,∴tan∠BDE===;故答案為:.【點睛】本題考查相似三角形的判定和性質(zhì),矩形的性質(zhì),三角函數(shù)等知識;熟練掌握矩形的性質(zhì),證明三角形相似是解決問題的關(guān)鍵.三、解答題(共66分)19、(1);(1)存在,理由見解析;,,,,【分析】(1)利用待定系數(shù)法求出A,B,C的坐標,如圖1中,作PQ∥y軸交BC于Q,設(shè)P,則Q,構(gòu)建二次函數(shù)確定點P的坐標,作P關(guān)于y軸的對稱點P1(-2,6),作P關(guān)于x軸的對稱點P1(2,-6),的周長最小,其周長等于線段的長,由此即可解決問題.(1)首先求出平移后的拋物線的解析式,確定點H,點C′的坐標,分三種情形,當OC′=C′S時,可得菱形OC′S1K1,菱形OC′S1K1.當OC′=OS時,可得菱形OC′K3S3,菱形OC′K2S2.當OC′是菱形的對角線時,分別求解即可解決問題.【詳解】解:(1)如圖,,過點作軸平行線,交線段于點,設(shè),=-(m1-2)1+2,∵,∴m=2時,△PBC的面積最大,此時P(2,6)作點關(guān)于軸的對稱點,點關(guān)于軸的對稱點,連接交軸、軸分別為,此時的周長最小,其周長等于線段的長;∵,∴.(1)如圖,∵E(0,-2),平移后的拋物線經(jīng)過E,B,∴拋物線的解析式為y=-x1+bx-2,把B(8,0)代入得到b=2,∴平移后的拋物線的解析式為y=-x+2x-2=-(x-1)(x-8),令y=0,得到x=1或8,∴H(1,0),∵△CHB繞點H順時針旋轉(zhuǎn)90°至△C′HB′,∴C′(6,1),當OC′=C′S時,可得菱形OC′S1K1,菱形OC′S1K1,∵OC′=C′S==1,∴可得S1(5,1-),S1(5,1+),∵點C′向左平移一個單位,向下平移得到S1,∴點O向左平移一個單位,向下平移個單位得到K1,∴K1(-1,-),同法可得K1(-1,),當OC′=OS時,可得菱形OC′K3S3,菱形OC′K2S2,同法可得K3(11,1-),K2(11,1+),當OC′是菱形的對角線時,設(shè)S5(5,m),則有51+m1=11+(1-m)1,解得m=-5,∴S5(5,-5),∵點O向右平移5個單位,向下平移5個單位得到S5,∴C′向上平移5個單位,向左平移5個單位得到K5,∴K5(1,7),綜上所述,滿足條件的點K的坐標為(-1,-)或(-1,)或(11,1-)或(11,1+)或(1,7).【點睛】本題屬于二次函數(shù)綜合題,考查了二次函數(shù)的性質(zhì),平移變換,翻折變換,菱形的判定和性質(zhì),軸對稱最短問題等知識,解題的關(guān)鍵是學(xué)會利用軸對稱解決最短問題,學(xué)會用分類討論的思想思考問題.20、(1)y=-x2+4x+5(2)m的值為7或9(3)Q點的坐標為(﹣2,﹣7)或(6,﹣7)或(4,5)【分析】(1)由A、B的坐標,利用待定系數(shù)法可求得拋物線的解析式;(2)由題意可求得C點坐標,設(shè)平移后的點C的對應(yīng)點為C′,則C′點的縱坐標為8,代入拋物線解析式可求得C′點的坐標,則可求得平移的單位,可求得m的值;(3)由(2)可求得E點坐標,連接BE交對稱軸于點M,過E作EF⊥x軸于點F,當BE為平行四邊形的邊時,過Q作對稱軸的垂線,垂足為N,則可證得△PQN≌△EFB,可求得QN,即可求得Q到對稱軸的距離,則可求得Q點的橫坐標,代入拋物線解析式可求得Q點坐標;當BE為對角線時,由B、E的坐標可求得線段BE的中點坐標,設(shè)Q(x,y),由P點的橫坐標則可求得Q點的橫坐標,代入拋物線解析式可求得Q點的坐標.【詳解】(1)∵拋物線y=﹣x2+bx+c與x軸分別交于A(﹣1,0),B(5,0)兩點,∴,解得,∴拋物線解析式為y=﹣x2+4x+5;(2)∵AD=5,且OA=1,∴OD=6,且CD=8,∴C(﹣6,8),設(shè)平移后的點C的對應(yīng)點為C′,則C′點的縱坐標為8,代入拋物線解析式可得8=﹣x2+4x+5,解得x=1或x=3,∴C′點的坐標為(1,8)或(3,8),∵C(﹣6,8),∴當點C落在拋物線上時,向右平移了7或9個單位,∴m的值為7或9;(3)∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴拋物線對稱軸為x=2,∴可設(shè)P(2,t),由(2)可知E點坐標為(1,8),①當BE為平行四邊形的邊時,連接BE交對稱軸于點M,過E作EF⊥x軸于點F,當BE為平行四邊形的邊時,過Q作對稱軸的垂線,垂足為N,如圖,則∠BEF=∠BMP=∠QPN,在△PQN和△EFB中∴△PQN≌△EFB(AAS),∴NQ=BF=OB﹣OF=5﹣1=4,設(shè)Q(x,y),則QN=|x﹣2|,∴|x﹣2|=4,解得x=﹣2或x=6,當x=﹣2或x=6時,代入拋物線解析式可求得y=﹣7,∴Q點坐標為(﹣2,﹣7)或(6,﹣7);②當BE為對角線時,∵B(5,0),E(1,8),∴線段BE的中點坐標為(3,4),則線段PQ的中點坐標為(3,4),設(shè)Q(x,y),且P(2,t),∴x+2=3×2,解得x=4,把x=4代入拋物線解析式可求得y=5,∴Q(4,5);綜上可知Q點的坐標為(﹣2,﹣7)或(6,﹣7)或(4,5).考點:二次函數(shù)綜合題.21、(1);(2).【分析】(1)根據(jù)圓周角定理和直角三角形的性質(zhì)可以∠DCB的度數(shù);(2)用扇形AOD的面積減去三角形OAF的面積乘2,得陰影部分面積.【詳解】(1)證明:為的直徑,為的弦,且,,,,,交延長線于點,,,,∴(2),,且,,,,,陰影部分的面積為:.【點睛】本題主要考查切線的性質(zhì)及扇形面積的計算,掌握過切點的半徑與切線垂直是解題的關(guān)鍵,學(xué)會用分割法求陰影部分面積.22、(1)反比例函數(shù)表達式為,正比例函數(shù)表達式為;(2),.【解析】試題分析:(1)將點A坐標(2,-2)分別代入y=kx、y=求得k、m的值即可;(2)由題意得平移后直線解析式,即可知點B坐標,聯(lián)立方程組求解可得第四象限內(nèi)的交點C得坐標,可將△ABC的面積轉(zhuǎn)化為△OBC的面積.試題解析:()把代入反比例函數(shù)表達式,得,解得,∴反比例函數(shù)表達式為,把代入正比例函數(shù),得,解得,∴正比例函數(shù)表達式為.()直線由直線向上平移個單位所得,∴直線的表達式為,由,解得或,∵在第四象限,∴,連接,∵,,,.23、(1);(2)300元;(3)最高利潤為20000元,最低利潤為15000元.【分析】(1)根據(jù)銷售利潤每天的銷售量(銷售單價成本價),即可列出函數(shù)關(guān)系式;(2)令代入解析式,求出滿足條件的的值即可;(3)根據(jù)(1)得到銷售利潤的關(guān)系式,利用配方法可求最大值,將代入即可求出最小值.【詳解】解:(1)由題意得:;(2)令,解得:,故要使每月的利潤為20000元,銷售單價應(yīng)定為300元;(3),當時,;故最高利潤為20000元,最低利潤為15000元.【點睛】本題考查了二次函數(shù)的實際應(yīng)用,難度適中,解答本題的關(guān)鍵是熟練掌握利用配方法求二次函數(shù)的最大值.24、(1),;(2)或;(3)存在,點的坐標是或或.【分析】(1)先把點A(4,3)代入求出m的值,再把A(-2,n)代入求出n即可;(2)利用圖象法即可解決問題,寫出直線的圖象在反比例函數(shù)的圖象上方的自變量的取值范圍即可;(3)先求出直線AB的解析式,然后分兩種情況求解即可:①當AC=AD時,②當CD=CA時,其中又分為點D在點C的左邊和右邊兩種情況.【詳解】解:(1)∵反比例函數(shù)過點點A(4,3),∴,∴,,把代入得,∴;(2)由圖像可知,不等式的解集為或;(3)設(shè)直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論