2021-2022學(xué)年天津市英華中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
2021-2022學(xué)年天津市英華中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
2021-2022學(xué)年天津市英華中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
2021-2022學(xué)年天津市英華中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
2021-2022學(xué)年天津市英華中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022年高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的圖象在點處的切線為,則在軸上的截距為()A. B. C. D.2.中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,指數(shù)學(xué).某校國學(xué)社團開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有()A.12種 B.24種 C.36種 D.48種3.是虛數(shù)單位,則()A.1 B.2 C. D.4.某學(xué)校調(diào)查了200名學(xué)生每周的自習(xí)時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習(xí)時間的范圍是17.5,30],樣本數(shù)據(jù)分組為17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根據(jù)直方圖,這200名學(xué)生中每周的自習(xí)時間不少于22.5小時的人數(shù)是()A.56 B.60 C.140 D.1205.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或16.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結(jié)論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B7.向量,,且,則()A. B. C. D.8.設(shè)f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調(diào)遞減,則()A. B.C. D.9.設(shè)全集U=R,集合,則()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}10.復(fù)數(shù)滿足為虛數(shù)單位),則的虛部為()A. B. C. D.11.設(shè)函數(shù)若關(guān)于的方程有四個實數(shù)解,其中,則的取值范圍是()A. B. C. D.12.設(shè),則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知關(guān)于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集為A,且A中共含有n個整數(shù),則當n最小時實數(shù)a的值為_____.14.若直線與直線交于點,則長度的最大值為____.15.甲、乙兩人下棋,兩人下成和棋的概率是,乙獲勝的概率是,則乙不輸?shù)母怕适莀____.16.已知數(shù)列滿足,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面,,點在線段上,且.(1)求證:平面;(2)若,,,,求二面角的正弦值.18.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程以及曲線的直角坐標方程;(2)若直線與曲線、曲線在第一象限交于兩點,且,點的坐標為,求的面積.19.(12分)設(shè)函數(shù)f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(20.(12分)(選修4-4:坐標系與參數(shù)方程)在平面直角坐標系,已知曲線(為參數(shù)),在以原點為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)過點且與直線平行的直線交于,兩點,求點到,的距離之積.21.(12分)設(shè)函數(shù).(1)時,求的單調(diào)區(qū)間;(2)當時,設(shè)的最小值為,若恒成立,求實數(shù)t的取值范圍.22.(10分)已知橢圓,左、右焦點為,點為上任意一點,若的最大值為3,最小值為1.(1)求橢圓的方程;(2)動直線過點與交于兩點,在軸上是否存在定點,使成立,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

求出函數(shù)在處的導(dǎo)數(shù)后可得曲線在處的切線方程,從而可求切線的縱截距.【詳解】,故,所以曲線在處的切線方程為:.令,則,故切線的縱截距為.故選:A.【點睛】本題考查導(dǎo)數(shù)的幾何意義以及直線的截距,注意直線的縱截距指直線與軸交點的縱坐標,因此截距有正有負,本題屬于基礎(chǔ)題.2.C【解析】

根據(jù)“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰有3類排法,再考慮兩者的順序,有種,剩余的3門全排列,即可求解.【詳解】由題意,“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰時,可排在第1節(jié)和第2節(jié)或第4節(jié)和第5節(jié)或第5節(jié)和第6節(jié),有3種,再考慮兩者的順序,有種,剩余的3門全排列,安排在剩下的3個位置,有種,所以“六藝”課程講座不同的排課順序共有種不同的排法.故選:C.【點睛】本題主要考查了排列、組合的應(yīng)用,其中解答中認真審題,根據(jù)題設(shè)條件,先排列有限制條件的元素是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.3.C【解析】

由復(fù)數(shù)除法的運算法則求出,再由模長公式,即可求解.【詳解】由.故選:C.【點睛】本題考查復(fù)數(shù)的除法和模,屬于基礎(chǔ)題.4.C【解析】

試題分析:由題意得,自習(xí)時間不少于小時的頻率為,故自習(xí)時間不少于小時的頻率為,故選C.考點:頻率分布直方圖及其應(yīng)用.5.D【解析】

求得直線的斜率,利用曲線的導(dǎo)數(shù),求得切點坐標,代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D【點睛】本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎(chǔ)題.6.C【解析】試題分析:集合考點:集合間的關(guān)系7.D【解析】

根據(jù)向量平行的坐標運算以及誘導(dǎo)公式,即可得出答案.【詳解】故選:D【點睛】本題主要考查了由向量平行求參數(shù)以及誘導(dǎo)公式的應(yīng)用,屬于中檔題.8.D【解析】

利用是偶函數(shù)化簡,結(jié)合在區(qū)間上的單調(diào)性,比較出三者的大小關(guān)系.【詳解】是偶函數(shù),,而,因為在上遞減,,即.故選:D【點睛】本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎(chǔ)題.9.C【解析】

解一元二次不等式求得集合,由此求得【詳解】由,解得或.因為或,所以.故選:C【點睛】本小題主要考查一元二次不等式的解法,考查集合補集的概念和運算,屬于基礎(chǔ)題.10.C【解析】

,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,故的虛部為.故選:C.【點睛】本題考查復(fù)數(shù)的除法運算,考查學(xué)生的基本運算能力,是一道基礎(chǔ)題.11.B【解析】

畫出函數(shù)圖像,根據(jù)圖像知:,,,計算得到答案.【詳解】,畫出函數(shù)圖像,如圖所示:根據(jù)圖像知:,,故,且.故.故選:.【點睛】本題考查了函數(shù)零點問題,意在考查學(xué)生的計算能力和應(yīng)用能力,畫出圖像是解題的關(guān)鍵.12.C【解析】

根據(jù)充分條件和必要條件的定義結(jié)合對數(shù)的運算進行判斷即可.【詳解】∵a,b∈(1,+∞),∴a>b?logab<1,logab<1?a>b,∴a>b是logab<1的充分必要條件,故選C.【點睛】本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的解法是解決本題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13.-1【解析】

討論三種情況,a<0時,根據(jù)均值不等式得到a(﹣a)≤﹣14,計算等號成立的條件得到答案.【詳解】已知關(guān)于x的不等式(ax﹣a1﹣4)(x﹣4)>0,①a<0時,[x﹣(a)](x﹣4)<0,其中a0,故解集為(a,4),由于a(﹣a)≤﹣14,當且僅當﹣a,即a=﹣1時取等號,∴a的最大值為﹣4,當且僅當a4時,A中共含有最少個整數(shù),此時實數(shù)a的值為﹣1;②a=0時,﹣4(x﹣4)>0,解集為(﹣∞,4),整數(shù)解有無窮多,故a=0不符合條件;③a>0時,[x﹣(a)](x﹣4)>0,其中a4,∴故解集為(﹣∞,4)∪(a,+∞),整數(shù)解有無窮多,故a>0不符合條件;綜上所述,a=﹣1.故答案為:﹣1.【點睛】本題考查了解不等式,均值不等式,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.14.【解析】

根據(jù)題意可知,直線與直線分別過定點,且這兩條直線互相垂直,由此可知,其交點在以為直徑的圓上,結(jié)合圖形求出線段的最大值即可.【詳解】由題可知,直線可化為,所以其過定點,直線可化為,所以其過定點,且滿足,所以直線與直線互相垂直,其交點在以為直徑的圓上,作圖如下:結(jié)合圖形可知,線段的最大值為,因為為線段的中點,所以由中點坐標公式可得,所以線段的最大值為.故答案為:【點睛】本題考查過交點的直線系方程、動點的軌跡問題及點與圓的位置關(guān)系;考查數(shù)形結(jié)合思想和運算求解能力;根據(jù)圓的定義得到交點在以為直徑的圓上是求解本題的關(guān)鍵;屬于中檔題.15.【解析】乙不輸?shù)母怕蕿?,?16.【解析】

項和轉(zhuǎn)化可得,討論是否滿足,分段表示即得解【詳解】當時,由已知,可得,∵,①故,②由①-②得,∴.顯然當時不滿足上式,∴故答案為:【點睛】本題考查了利用求,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算,分類討論的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】

(1)要證明平面,只需證明,,即可求得答案;(2)先根據(jù)已知證明四邊形為矩形,以為原點,為軸,為軸,為軸,建立坐標系,求得平面的法向量為,平面的法向量,設(shè)二面角的平面角為,,即可求得答案.【詳解】(1)平面,平面,.,,.又,平面.(2)由(1)可知.在中,,..又,,四邊形為矩形.以為原點,為軸,為軸,為軸,建立坐標系,如圖:則:,,,,:,設(shè)平面的法向量為,即,令,則,由題平面,即平面的法向量為由二面角的平面角為銳角,設(shè)二面角的平面角為即二面角的正弦值為:.【點睛】本題主要考查了求證線面垂直和向量法求二面角,解題關(guān)鍵是掌握線面垂直判斷定理和向量法求二面角的方法,考查了分析能力和計算能力,屬于中檔題.18.(1)的極坐標方程為,的直角坐標方程為(2)【解析】

(1)先把曲線的參數(shù)方程消參后,轉(zhuǎn)化為普通方程,再利用求得極坐標方程.將,化為,再利用求得曲線的普通方程.(2)設(shè)直線的極角,代入,得,將代入,得,由,得,即,從而求得,,從而求得,再利用求解.【詳解】(1)依題意,曲線,即,故,即.因為,故,即,即.(2)將代入,得,將代入,得,由,得,得,解得,則.又,故,故的面積.【點睛】本題考查極坐標方程與直角坐標方程、參數(shù)方程與普通方程的轉(zhuǎn)化、極坐標的幾何意義,還考查推理論證能力以及數(shù)形結(jié)合思想,屬于中檔題.19.(I)π;(II)-【解析】

(I)化簡得到fx(II)f(α2)=2sin【詳解】(I)f(x)==2sin2x+(II)f(α2)=2sinα∈(π6,π),故α+故α+π12∈sin(2α+【點睛】本題考查了三角函數(shù)的周期,三角恒等變換,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.20.(1)曲線:,直線的直角坐標方程;(2)1.【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線化為普通方程,再根據(jù)將直線的極坐標方程化為直角坐標方程;(2)根據(jù)題意設(shè)直線參數(shù)方程,代入C方程,利用參數(shù)幾何意義以及韋達定理得點到,的距離之積試題解析:(1)曲線化為普通方程為:,由,得,所以直線的直角坐標方程為.(2)直線的參數(shù)方程為(為參數(shù)),代入化簡得:,設(shè)兩點所對應(yīng)的參數(shù)分別為,則,.21.(1)的增區(qū)間為,減區(qū)間為;(2).【解析】

(1)求出函數(shù)的導(dǎo)數(shù),由于參數(shù)的范圍對導(dǎo)數(shù)的符號有影響,對參數(shù)分類,再研究函數(shù)的單調(diào)區(qū)間;(2)由(1)的結(jié)論,求出的表達式,由于恒成立,故求出的最大值,即得實數(shù)的取值范圍的左端點.【詳解】解:(1)解:,當時,,解得的增區(qū)間為,解得的減區(qū)間為.(2)解:若,由得,由得,所以函數(shù)的減區(qū)間為,增區(qū)間為;,因為,所以,,令,則恒成立,由于,當時,,故函數(shù)在上是減函數(shù),所以成立;當時,若則,故函數(shù)在上是增函數(shù),即對時,,與題意不符;綜上,為所求.【點睛】本題考查導(dǎo)數(shù)在最大值與最小值問題中的應(yīng)用,求解本題關(guān)鍵是根據(jù)導(dǎo)數(shù)研究出函數(shù)的單調(diào)性,由最值的定義得出函數(shù)的最值,本題中第一小題是求出函數(shù)的單調(diào)區(qū)間,第二小題是一個求函數(shù)的最值的問題,此類題運算量較大,轉(zhuǎn)化靈活,解題時極易因為變形與運算出錯,故做題時要認真仔細.22.(1)(2)存在;詳見解析【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論