云南省寧蒗縣2023學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第1頁(yè)
云南省寧蒗縣2023學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第2頁(yè)
云南省寧蒗縣2023學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第3頁(yè)
云南省寧蒗縣2023學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第4頁(yè)
云南省寧蒗縣2023學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某歌手大賽進(jìn)行電視直播,比賽現(xiàn)場(chǎng)有名特約嘉賓給每位參賽選手評(píng)分,場(chǎng)內(nèi)外的觀眾可以通過(guò)網(wǎng)絡(luò)平臺(tái)給每位參賽選手評(píng)分.某選手參加比賽后,現(xiàn)場(chǎng)嘉賓的評(píng)分情況如下表,場(chǎng)內(nèi)外共有數(shù)萬(wàn)名觀眾參與了評(píng)分,組織方將觀眾評(píng)分按照,,分組,繪成頻率分布直方圖如下:嘉賓評(píng)分嘉賓評(píng)分的平均數(shù)為,場(chǎng)內(nèi)外的觀眾評(píng)分的平均數(shù)為,所有嘉賓與場(chǎng)內(nèi)外的觀眾評(píng)分的平均數(shù)為,則下列選項(xiàng)正確的是()A. B. C. D.2.執(zhí)行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.3.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β4.如圖,在中,點(diǎn)是的中點(diǎn),過(guò)點(diǎn)的直線分別交直線,于不同的兩點(diǎn),若,,則()A.1 B. C.2 D.35.已知半徑為2的球內(nèi)有一個(gè)內(nèi)接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為()A. B. C. D.6.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件7.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.8.記單調(diào)遞增的等比數(shù)列的前項(xiàng)和為,若,,則()A. B. C. D.9.《九章算術(shù)》勾股章有一“引葭赴岸”問(wèn)題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問(wèn)水深,葭各幾何?”,其意思是:有一個(gè)直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦?shù)闹参?,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問(wèn)水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為()A. B. C. D.10.若復(fù)數(shù),則()A. B. C. D.2011.?dāng)?shù)列滿足:,,,為其前n項(xiàng)和,則()A.0 B.1 C.3 D.412.在中,D為的中點(diǎn),E為上靠近點(diǎn)B的三等分點(diǎn),且,相交于點(diǎn)P,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在等腰三角形中,已知,,分別是邊上的點(diǎn),且,其中且,若線段的中點(diǎn)分別為,則的最小值是_____.14.甲、乙、丙、丁四人參加冬季滑雪比賽,有兩人獲獎(jiǎng).在比賽結(jié)果揭曉之前,四人的猜測(cè)如下表,其中“√”表示猜測(cè)某人獲獎(jiǎng),“×”表示猜測(cè)某人未獲獎(jiǎng),而“○”則表示對(duì)某人是否獲獎(jiǎng)未發(fā)表意見(jiàn).已知四個(gè)人中有且只有兩個(gè)人的猜測(cè)是正確的,那么兩名獲獎(jiǎng)?wù)呤莀______.甲獲獎(jiǎng)乙獲獎(jiǎng)丙獲獎(jiǎng)丁獲獎(jiǎng)甲的猜測(cè)√××√乙的猜測(cè)×○○√丙的猜測(cè)×√×√丁的猜測(cè)○○√×15.在回歸分析的問(wèn)題中,我們可以通過(guò)對(duì)數(shù)變換把非線性回歸方程,()轉(zhuǎn)化為線性回歸方程,即兩邊取對(duì)數(shù),令,得到.受其啟發(fā),可求得函數(shù)()的值域是_________.16.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(1)若函數(shù)在處取得極值1,證明:(2)若恒成立,求實(shí)數(shù)的取值范圍.18.(12分)已知,,.(1)求的最小值;(2)若對(duì)任意,都有,求實(shí)數(shù)的取值范圍.19.(12分)已知橢圓,上、下頂點(diǎn)分別是、,上、下焦點(diǎn)分別是、,焦距為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)若為橢圓上異于、的動(dòng)點(diǎn),過(guò)作與軸平行的直線,直線與交于點(diǎn),直線與直線交于點(diǎn),判斷是否為定值,說(shuō)明理由.20.(12分)設(shè)前項(xiàng)積為的數(shù)列,(為常數(shù)),且是等差數(shù)列.(I)求的值及數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè)是數(shù)列的前項(xiàng)和,且,求的最小值.21.(12分)某校共有學(xué)生2000人,其中男生900人,女生1100人,為了調(diào)查該校學(xué)生每周平均體育鍛煉時(shí)間,采用分層抽樣的方法收集該校100名學(xué)生每周平均體育鍛煉時(shí)間(單位:小時(shí)).(1)應(yīng)抽查男生與女生各多少人?(2)根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均體育鍛煉時(shí)間的頻率分布表:時(shí)間(小時(shí))[0,1](1,2](2,3](3,4](4,5](5,6]頻率0.050.200.300.250.150.05若在樣本數(shù)據(jù)中有38名男學(xué)生平均每周課外體育鍛煉時(shí)間超過(guò)2小時(shí),請(qǐng)完成每周平均體育鍛煉時(shí)間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時(shí)間與性別有關(guān)”?男生女生總計(jì)每周平均體育鍛煉時(shí)間不超過(guò)2小時(shí)每周平均體育鍛煉時(shí)間超過(guò)2小時(shí)總計(jì)附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.87922.(10分)對(duì)于非負(fù)整數(shù)集合(非空),若對(duì)任意,或者,或者,則稱為一個(gè)好集合.以下記為的元素個(gè)數(shù).(1)給出所有的元素均小于的好集合.(給出結(jié)論即可)(2)求出所有滿足的好集合.(同時(shí)說(shuō)明理由)(3)若好集合滿足,求證:中存在元素,使得中所有元素均為的整數(shù)倍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

計(jì)算出、,進(jìn)而可得出結(jié)論.【詳解】由表格中的數(shù)據(jù)可知,,由頻率分布直方圖可知,,則,由于場(chǎng)外有數(shù)萬(wàn)名觀眾,所以,.故選:B.【點(diǎn)睛】本題考查平均數(shù)的大小比較,涉及平均數(shù)公式以及頻率分布直方圖中平均數(shù)的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.2.C【解析】

由程序語(yǔ)言依次計(jì)算,直到時(shí)輸出即可【詳解】程序的運(yùn)行過(guò)程為當(dāng)n=2時(shí),時(shí),,此時(shí)輸出.故選:C【點(diǎn)睛】本題考查由程序框圖計(jì)算輸出結(jié)果,屬于基礎(chǔ)題3.B【解析】

根據(jù)線面平行、線面垂直和空間角的知識(shí),判斷A選項(xiàng)的正確性.由線面平行有關(guān)知識(shí)判斷B選項(xiàng)的正確性.根據(jù)面面垂直的判定定理,判斷C選項(xiàng)的正確性.根據(jù)面面平行的性質(zhì)判斷D選項(xiàng)的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點(diǎn)睛】本小題主要考查空間線線、線面和面面有關(guān)命題真假性的判斷,屬于基礎(chǔ)題.4.C【解析】

連接AO,因?yàn)镺為BC中點(diǎn),可由平行四邊形法則得,再將其用,表示.由M、O、N三點(diǎn)共線可知,其表達(dá)式中的系數(shù)和,即可求出的值.【詳解】連接AO,由O為BC中點(diǎn)可得,,、、三點(diǎn)共線,,.故選:C.【點(diǎn)睛】本題考查了向量的線性運(yùn)算,由三點(diǎn)共線求參數(shù)的問(wèn)題,熟記向量的共線定理是關(guān)鍵.屬于基礎(chǔ)題.5.D【解析】

分別求出球和圓柱的體積,然后可得比值.【詳解】設(shè)圓柱的底面圓半徑為,則,所以圓柱的體積.又球的體積,所以球的體積與圓柱的體積的比,故選D.【點(diǎn)睛】本題主要考查幾何體的體積求解,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).6.B【解析】

試題分析:通過(guò)逆否命題的同真同假,結(jié)合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價(jià)性知,“若q則”為真,“若則q”為假,故選B.考點(diǎn):邏輯命題7.A【解析】

由題意求得c與的值,結(jié)合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì),屬于基礎(chǔ)題.8.C【解析】

先利用等比數(shù)列的性質(zhì)得到的值,再根據(jù)的方程組可得的值,從而得到數(shù)列的公比,進(jìn)而得到數(shù)列的通項(xiàng)和前項(xiàng)和,根據(jù)后兩個(gè)公式可得正確的選項(xiàng).【詳解】因?yàn)闉榈缺葦?shù)列,所以,故即,由可得或,因?yàn)闉檫f增數(shù)列,故符合.此時(shí),所以或(舍,因?yàn)闉檫f增數(shù)列).故,.故選C.【點(diǎn)睛】一般地,如果為等比數(shù)列,為其前項(xiàng)和,則有性質(zhì):(1)若,則;(2)公比時(shí),則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.9.C【解析】

由題意知:,,設(shè),則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設(shè),則在中,列勾股方程得:,解得所以從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為故選C.【點(diǎn)睛】本題考查了幾何概型中的長(zhǎng)度型,屬于基礎(chǔ)題.10.B【解析】

化簡(jiǎn)得到,再計(jì)算模長(zhǎng)得到答案.【詳解】,故.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算,復(fù)數(shù)的模,意在考查學(xué)生的計(jì)算能力.11.D【解析】

用去換中的n,得,相加即可找到數(shù)列的周期,再利用計(jì)算.【詳解】由已知,①,所以②,①+②,得,從而,數(shù)列是以6為周期的周期數(shù)列,且前6項(xiàng)分別為1,2,1,-1,-2,-1,所以,.故選:D.【點(diǎn)睛】本題考查周期數(shù)列的應(yīng)用,在求時(shí),先算出一個(gè)周期的和即,再將表示成即可,本題是一道中檔題.12.B【解析】

設(shè),則,,由B,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因?yàn)锽,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,所以,,所以,.故選:B.【點(diǎn)睛】本題考查了平面向量基本定理和向量共線定理的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)條件及向量數(shù)量積運(yùn)算求得,連接,由三角形中線的性質(zhì)表示出.根據(jù)向量的線性運(yùn)算及數(shù)量積公式表示出,結(jié)合二次函數(shù)性質(zhì)即可求得最小值.【詳解】根據(jù)題意,連接,如下圖所示:在等腰三角形中,已知,則由向量數(shù)量積運(yùn)算可知線段的中點(diǎn)分別為則由向量減法的線性運(yùn)算可得所以因?yàn)?代入化簡(jiǎn)可得因?yàn)樗援?dāng)時(shí),取得最小值因而故答案為:【點(diǎn)睛】本題考查了平面向量數(shù)量積的綜合應(yīng)用,向量的線性運(yùn)算及模的求法,二次函數(shù)最值的應(yīng)用,屬于中檔題.14.乙、丁【解析】

本題首先可根據(jù)題意中的“四個(gè)人中有且只有兩個(gè)人的猜測(cè)是正確的”將題目分為四種情況,然后對(duì)四種情況依次進(jìn)行分析,觀察四人所猜測(cè)的結(jié)果是否沖突,最后即可得出結(jié)果.【詳解】從表中可知,若甲猜測(cè)正確,則乙,丙,丁猜測(cè)錯(cuò)誤,與題意不符,故甲猜測(cè)錯(cuò)誤;若乙猜測(cè)正確,則依題意丙猜測(cè)無(wú)法確定正誤,丁猜測(cè)錯(cuò)誤;若丙猜測(cè)正確,則丁猜測(cè)錯(cuò)誤;綜上只有乙,丙猜測(cè)不矛盾,依題意乙,丙猜測(cè)是正確的,從而得出乙,丁獲獎(jiǎng).所以本題答案為乙、丁.【點(diǎn)睛】本題是一個(gè)簡(jiǎn)單的合情推理題,能否根據(jù)“四個(gè)人中有且只有兩個(gè)人的猜測(cè)是正確的”將題目所給條件分為四種情況并通過(guò)推理判斷出每一種情況的正誤是解決本題的關(guān)鍵,考查推理能力,是簡(jiǎn)單題.15.【解析】

轉(zhuǎn)化()為,即得解.【詳解】由題意:().故答案為:【點(diǎn)睛】本題考查類比法求函數(shù)的值域,考查了學(xué)生邏輯推理,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.16.【解析】

利用等差數(shù)列的通項(xiàng)公式以及等比中項(xiàng)的性質(zhì),化簡(jiǎn)求出公差與的關(guān)系,然后轉(zhuǎn)化求解的值.【詳解】設(shè)等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式以及等比中項(xiàng)的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)證明見(jiàn)詳解;(2)【解析】

(1)求出函數(shù)的導(dǎo)函數(shù),由在處取得極值1,可得且.解出,構(gòu)造函數(shù),分析其單調(diào)性,結(jié)合,即可得到的范圍,命題得證;

(2)由分離參數(shù),得到恒成立,構(gòu)造函數(shù),求導(dǎo)函數(shù),再構(gòu)造函數(shù),進(jìn)行二次求導(dǎo).由知,則在上單調(diào)遞增.根據(jù)零點(diǎn)存在定理可知有唯一零點(diǎn),且.由此判斷出時(shí),單調(diào)遞減,時(shí),單調(diào)遞增,則,即.由得,再次構(gòu)造函數(shù),求導(dǎo)分析單調(diào)性,從而得,即,最終求得,則.【詳解】解:(1)由題知,∵函數(shù)在,處取得極值1,,且,,,令,則為增函數(shù),,即成立.(2)不等式恒成立,即不等式恒成立,即恒成立,令,則令,則,,,在上單調(diào)遞增,且,有唯一零點(diǎn),且,當(dāng)時(shí),,,單調(diào)遞減;當(dāng)時(shí),,,單調(diào)遞增.,由整理得,令,則方程等價(jià)于而在上恒大于零,在上單調(diào)遞增,.,∴實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查了函數(shù)的極值,利用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性,函數(shù)的零點(diǎn)存在定理,證明不等式,解決不等式恒成立問(wèn)題.其中多次構(gòu)造函數(shù),是解題的關(guān)鍵,屬于綜合性很強(qiáng)的難題.18.(1)2;(2).【解析】

(1)化簡(jiǎn)得,所以,展開(kāi)后利用基本不等式求最小值即可;(2)由(1),原不等式可轉(zhuǎn)化為,討論去絕對(duì)值即可求得的取值范圍.【詳解】(1)∵,,∴,∴.∴.當(dāng)且僅當(dāng)且即時(shí),.(2)由(1)知,,對(duì)任意,都有,∴,即.①當(dāng)時(shí),有,解得;②當(dāng),時(shí),有,解得;③當(dāng)時(shí),有,解得;綜上,,∴實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查基本不等式的運(yùn)用和求解含絕對(duì)值的不等式,考查學(xué)生的分類思想和計(jì)算能力,屬于中檔題.19.(1);(2),理由見(jiàn)解析.【解析】

(1)求出橢圓的上、下焦點(diǎn)坐標(biāo),利用橢圓的定義求得的值,進(jìn)而可求得的值,由此可得出橢圓的方程;(2)設(shè)點(diǎn)的坐標(biāo)為,求出直線的方程,求出點(diǎn)的坐標(biāo),由此計(jì)算出直線和的斜率,可計(jì)算出的值,進(jìn)而可求得的值,即可得出結(jié)論.【詳解】(1)由題意可知,橢圓的上焦點(diǎn)為、,由橢圓的定義可得,可得,,因此,所求橢圓的方程為;(2)設(shè)點(diǎn)的坐標(biāo)為,則,得,直線的斜率為,所以,直線的方程為,聯(lián)立,解得,即點(diǎn),直線的斜率為,直線的斜率為,所以,,,因此,.【點(diǎn)睛】本題考查橢圓方程的求解,同時(shí)也考查了橢圓中定值問(wèn)題的求解,考查計(jì)算能力,屬于中等題.20.(Ⅰ),;(Ⅱ)【解析】

(Ⅰ)當(dāng)時(shí),由,得到,兩邊同除以,得到.再根據(jù)是等差數(shù)列.求解.(Ⅱ),根據(jù)前n項(xiàng)和的定義得到,令,研究其增減性即可.【詳解】(Ⅰ)當(dāng)時(shí),,所以,即,所以.因?yàn)槭堑炔顢?shù)列.,所以,,令,,,所以,即;(Ⅱ),所以,,令,所以,,即,所以數(shù)列是遞增數(shù)列,所以,即.【點(diǎn)睛】本題主要考查等差數(shù)列的定義,前n項(xiàng)和以及數(shù)列的增減性,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.21.(1)男生人數(shù)為人,女生人數(shù)55人.(2)列聯(lián)表答案見(jiàn)解析,有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時(shí)間與性別有關(guān).【解析】

(1)求出男女比例,按比例分配即可;(2)根據(jù)題意結(jié)合頻率分布表,先求出二聯(lián)表中數(shù)值,再結(jié)合公式計(jì)算,利用表格數(shù)據(jù)對(duì)比判斷即可【詳解】(1)因?yàn)槟猩藬?shù):女生人數(shù)=90

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論