![2023屆安徽省阜陽市潁河中學(xué)高三下第一次測試數(shù)學(xué)試題(含答案解析)_第1頁](http://file4.renrendoc.com/view/e20d4d92851eb27b5428e63c571f99c5/e20d4d92851eb27b5428e63c571f99c51.gif)
![2023屆安徽省阜陽市潁河中學(xué)高三下第一次測試數(shù)學(xué)試題(含答案解析)_第2頁](http://file4.renrendoc.com/view/e20d4d92851eb27b5428e63c571f99c5/e20d4d92851eb27b5428e63c571f99c52.gif)
![2023屆安徽省阜陽市潁河中學(xué)高三下第一次測試數(shù)學(xué)試題(含答案解析)_第3頁](http://file4.renrendoc.com/view/e20d4d92851eb27b5428e63c571f99c5/e20d4d92851eb27b5428e63c571f99c53.gif)
![2023屆安徽省阜陽市潁河中學(xué)高三下第一次測試數(shù)學(xué)試題(含答案解析)_第4頁](http://file4.renrendoc.com/view/e20d4d92851eb27b5428e63c571f99c5/e20d4d92851eb27b5428e63c571f99c54.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線C:()的左、右焦點(diǎn)分別為,過的直線l與雙曲線C的左支交于A、B兩點(diǎn).若,則雙曲線C的漸近線方程為()A. B. C. D.2.已知實(shí)數(shù)滿足,則的最小值為()A. B. C. D.3.在中,D為的中點(diǎn),E為上靠近點(diǎn)B的三等分點(diǎn),且,相交于點(diǎn)P,則()A. B.C. D.4.已知函數(shù)的最小正周期為,為了得到函數(shù)的圖象,只要將的圖象()A.向左平移個(gè)單位長度 B.向右平移個(gè)單位長度C.向左平移個(gè)單位長度 D.向右平移個(gè)單位長度5.已知,,則的大小關(guān)系為()A. B. C. D.6.已知函數(shù)()的部分圖象如圖所示.則()A. B.C. D.7.已知函數(shù)則函數(shù)的圖象的對稱軸方程為()A. B.C. D.8.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為()A. B. C. D.9.函數(shù)的圖象在點(diǎn)處的切線為,則在軸上的截距為()A. B. C. D.10.已知為坐標(biāo)原點(diǎn),角的終邊經(jīng)過點(diǎn)且,則()A. B. C. D.11.設(shè)命題函數(shù)在上遞增,命題在中,,下列為真命題的是()A. B. C. D.12.已知中內(nèi)角所對應(yīng)的邊依次為,若,則的面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在和上均單調(diào)遞增,則實(shí)數(shù)的取值范圍為________.14.設(shè)、、、、是表面積為的球的球面上五點(diǎn),四邊形為正方形,則四棱錐體積的最大值為__________.15.如圖,在長方體中,,E,F(xiàn),G分別為的中點(diǎn),點(diǎn)P在平面ABCD內(nèi),若直線平面EFG,則線段長度的最小值是________________.16.已知的終邊過點(diǎn),若,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;(Ⅱ)已知直線與曲線交于,兩點(diǎn),與軸交于點(diǎn),求.18.(12分)設(shè)點(diǎn),分別是橢圓的左、右焦點(diǎn),為橢圓上任意一點(diǎn),且的最小值為1.(1)求橢圓的方程;(2)如圖,動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),點(diǎn),是直線上的兩點(diǎn),且,,求四邊形面積的最大值.19.(12分)設(shè)橢圓的離心率為,左、右焦點(diǎn)分別為,點(diǎn)D在橢圓C上,的周長為.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過圓上任意一點(diǎn)P作圓E的切線l,若l與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),求證:為定值.20.(12分)已知的內(nèi)角的對邊分別為,且滿足.(1)求角的大小;(2)若的面積為,求的周長的最小值.21.(12分)對于很多人來說,提前消費(fèi)的認(rèn)識(shí)首先是源于信用卡,在那個(gè)工資不高的年代,信用卡絕對是神器,稍微大件的東西都是可以選擇用信用卡來買,甚至于分期買,然后慢慢還!現(xiàn)在銀行貸款也是很風(fēng)靡的,從房貸到車貸到一般的現(xiàn)金貸.信用卡“忽如一夜春風(fēng)來”,遍布了各大小城市的大街小巷.為了解信用卡在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了100人進(jìn)行抽樣分析,得到如下列聯(lián)表(單位:人)經(jīng)常使用信用卡偶爾或不用信用卡合計(jì)40歲及以下15355040歲以上203050合計(jì)3565100(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為市使用信用卡情況與年齡有關(guān)?(2)①現(xiàn)從所抽取的40歲及以下的網(wǎng)民中,按“經(jīng)常使用”與“偶爾或不用”這兩種類型進(jìn)行分層抽樣抽取10人,然后,再從這10人中隨機(jī)選出4人贈(zèng)送積分,求選出的4人中至少有3人偶爾或不用信用卡的概率;②將頻率視為概率,從市所有參與調(diào)查的40歲以上的網(wǎng)民中隨機(jī)抽取3人贈(zèng)送禮品,記其中經(jīng)常使用信用卡的人數(shù)為,求隨機(jī)變量的分布列、數(shù)學(xué)期望和方差.參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0102.0722.7063.8415.0246.63522.(10分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),如果方程有兩個(gè)不等實(shí)根,求實(shí)數(shù)t的取值范圍,并證明.
2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【答案解析】
設(shè),利用余弦定理,結(jié)合雙曲線的定義進(jìn)行求解即可.【題目詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【答案點(diǎn)睛】本題考查了雙曲線的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線的漸近線方程,考查了數(shù)學(xué)運(yùn)算能力.2.A【答案解析】
所求的分母特征,利用變形構(gòu)造,再等價(jià)變形,利用基本不等式求最值.【題目詳解】解:因?yàn)闈M足,則,當(dāng)且僅當(dāng)時(shí)取等號(hào),故選:.【答案點(diǎn)睛】本題考查通過拼湊法利用基本不等式求最值.拼湊法的實(shí)質(zhì)在于代數(shù)式的靈活變形,拼系數(shù)、湊常數(shù)是關(guān)鍵.(1)拼湊的技巧,以整式為基礎(chǔ),注意利用系數(shù)的變化以及等式中常數(shù)的調(diào)整,做到等價(jià)變形;(2)代數(shù)式的變形以拼湊出和或積的定值為目標(biāo)(3)拆項(xiàng)、添項(xiàng)應(yīng)注意檢驗(yàn)利用基本不等式的前提.3.B【答案解析】
設(shè),則,,由B,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,可知,,解得即可得出結(jié)果.【題目詳解】設(shè),則,,因?yàn)锽,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,所以,,所以,.故選:B.【答案點(diǎn)睛】本題考查了平面向量基本定理和向量共線定理的簡單應(yīng)用,屬于基礎(chǔ)題.4.A【答案解析】
由的最小正周期是,得,即,因此它的圖象向左平移個(gè)單位可得到的圖象.故選A.考點(diǎn):函數(shù)的圖象與性質(zhì).【名師點(diǎn)睛】三角函數(shù)圖象變換方法:5.D【答案解析】
由指數(shù)函數(shù)的圖像與性質(zhì)易得最小,利用作差法,結(jié)合對數(shù)換底公式及基本不等式的性質(zhì)即可比較和的大小關(guān)系,進(jìn)而得解.【題目詳解】根據(jù)指數(shù)函數(shù)的圖像與性質(zhì)可知,由對數(shù)函數(shù)的圖像與性質(zhì)可知,,所以最?。欢蓪?shù)換底公式化簡可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【答案點(diǎn)睛】本題考查了指數(shù)式與對數(shù)式的化簡變形,對數(shù)換底公式及基本不等式的簡單應(yīng)用,作差法比較大小,屬于中檔題.6.C【答案解析】
由圖象可知,可解得,利用三角恒等變換化簡解析式可得,令,即可求得.【題目詳解】依題意,,即,解得;因?yàn)樗裕?dāng)時(shí),.故選:C.【答案點(diǎn)睛】本題主要考查了由三角函數(shù)的圖象求解析式和已知函數(shù)值求自變量,考查三角恒等變換在三角函數(shù)化簡中的應(yīng)用,難度一般.7.C【答案解析】
,將看成一個(gè)整體,結(jié)合的對稱性即可得到答案.【題目詳解】由已知,,令,得.故選:C.【答案點(diǎn)睛】本題考查余弦型函數(shù)的對稱性的問題,在處理余弦型函數(shù)的性質(zhì)時(shí),一般采用整體法,結(jié)合三角函數(shù)的性質(zhì),是一道容易題.8.C【答案解析】
幾何體是由一個(gè)圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計(jì)算得到答案.【題目詳解】幾何體是由一個(gè)圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【答案點(diǎn)睛】本題考查了根據(jù)三視圖求表面積,意在考查學(xué)生的計(jì)算能力和空間想象能力.9.A【答案解析】
求出函數(shù)在處的導(dǎo)數(shù)后可得曲線在處的切線方程,從而可求切線的縱截距.【題目詳解】,故,所以曲線在處的切線方程為:.令,則,故切線的縱截距為.故選:A.【答案點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義以及直線的截距,注意直線的縱截距指直線與軸交點(diǎn)的縱坐標(biāo),因此截距有正有負(fù),本題屬于基礎(chǔ)題.10.C【答案解析】
根據(jù)三角函數(shù)的定義,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出結(jié)果.【題目詳解】根據(jù)題意,,解得,所以,所以,所以.故選:C.【答案點(diǎn)睛】本題考查三角函數(shù)定義的應(yīng)用和二倍角的正弦公式,考查計(jì)算能力.11.C【答案解析】
命題:函數(shù)在上單調(diào)遞減,即可判斷出真假.命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假.【題目詳解】解:命題:函數(shù),所以,當(dāng)時(shí),,即函數(shù)在上單調(diào)遞減,因此是假命題.命題:在中,在上單調(diào)遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【答案點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關(guān)系、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.12.A【答案解析】
由余弦定理可得,結(jié)合可得a,b,再利用面積公式計(jì)算即可.【題目詳解】由余弦定理,得,由,解得,所以,.故選:A.【答案點(diǎn)睛】本題考查利用余弦定理解三角形,考查學(xué)生的基本計(jì)算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
化簡函數(shù),求出在上的單調(diào)遞增區(qū)間,然后根據(jù)在和上均單調(diào)遞增,列出不等式求解即可.【題目詳解】由知,當(dāng)時(shí),在和上單調(diào)遞增,在和上均單調(diào)遞增,,
,
的取值范圍為:.
故答案為:.【答案點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),關(guān)鍵是根據(jù)函數(shù)的單調(diào)性列出關(guān)于m的方程組,屬中檔題.14.【答案解析】
根據(jù)球的表面積求得球的半徑,設(shè)球心到四棱錐底面的距離為,求得四棱錐的表達(dá)式,利用基本不等式求得體積的最大值.【題目詳解】由已知可得球的半徑,設(shè)球心到四棱錐底面的距離為,棱錐的高為,底面邊長為,的體積,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故答案為:【答案點(diǎn)睛】本小題主要考查球的表面積有關(guān)計(jì)算,考查球的內(nèi)接四棱錐體積的最值的求法,屬于中檔題.15.【答案解析】
如圖,連接,證明平面平面EFG.因?yàn)橹本€平面EFG,所以點(diǎn)P在直線AC上.當(dāng)時(shí).線段的長度最小,再求此時(shí)的得解.【題目詳解】如圖,連接,因?yàn)镋,F(xiàn),G分別為AB,BC,的中點(diǎn),所以,平面,則平面.因?yàn)?,所以同理得平面,?所以平面平面EFG.因?yàn)橹本€平面EFG,所以點(diǎn)P在直線AC上.在中,,故當(dāng)時(shí).線段的長度最小,最小值為.故答案為:【答案點(diǎn)睛】本題主要考查空間位置關(guān)系的證明,考查立體幾何中的軌跡問題,意在考查學(xué)生對這些知識(shí)的理解掌握水平.16.【答案解析】
】由題意利用任意角的三角函數(shù)的定義,求得的值.【題目詳解】∵的終邊過點(diǎn),若,.即答案為-2.【答案點(diǎn)睛】本題主要考查任意角的三角函數(shù)的定義和誘導(dǎo)公式,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(x-1)2+y2=4,直線l的直角坐標(biāo)方程為x-y-2=0;(2)3.【答案解析】
(1)消參得到曲線的普通方程,利用極坐標(biāo)和直角坐標(biāo)方程的互化公式求得直線的直角坐標(biāo)方程;(2)先得到直線的參數(shù)方程,將直線的參數(shù)方程代入到圓的方程,得到關(guān)于的一元二次方程,由根與系數(shù)的關(guān)系、參數(shù)的幾何意義進(jìn)行求解.【題目詳解】(1)由曲線C的參數(shù)方程(α為參數(shù))(α為參數(shù)),兩式平方相加,得曲線C的普通方程為(x-1)2+y2=4;由直線l的極坐標(biāo)方程可得ρcosθcos-ρsinθsin=ρcosθ-ρsinθ=2,即直線l的直角坐標(biāo)方程為x-y-2=0.(2)由題意可得P(2,0),則直線l的參數(shù)方程為(t為參數(shù)).設(shè)A,B兩點(diǎn)對應(yīng)的參數(shù)分別為t1,t2,則|PA|·|PB|=|t1|·|t2|,將(t為參數(shù))代入(x-1)2+y2=4,得t2+t-3=0,則Δ>0,由韋達(dá)定理可得t1·t2=-3,所以|PA|·|PB|=|-3|=3.18.(1);(2)2.【答案解析】
(1)利用的最小值為1,可得,,即可求橢圓的方程;(2)將直線的方程代入橢圓的方程中,得到關(guān)于的一元二次方程,由直線與橢圓僅有一個(gè)公共點(diǎn)知,即可得到,的關(guān)系式,利用點(diǎn)到直線的距離公式即可得到,.當(dāng)時(shí),設(shè)直線的傾斜角為,則,即可得到四邊形面積的表達(dá)式,利用基本不等式的性質(zhì),結(jié)合當(dāng)時(shí),四邊形是矩形,即可得出的最大值.【題目詳解】(1)設(shè),則,,,,由題意得,,橢圓的方程為;
(2)將直線的方程代入橢圓的方程中,得.
由直線與橢圓僅有一個(gè)公共點(diǎn)知,,化簡得:.
設(shè),,當(dāng)時(shí),設(shè)直線的傾斜角為,則,,,,∴當(dāng)時(shí),,,.當(dāng)時(shí),四邊形是矩形,.
所以四邊形面積的最大值為2.【答案點(diǎn)睛】本題主要考查橢圓的方程與性質(zhì)、直線方程、直線與橢圓的位置關(guān)系、向量知識(shí)、二次函數(shù)的單調(diào)性、基本不等式的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算能力、推理論證以及分析問題、解決問題的能力,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化思想.19.(1)(2)見解析【答案解析】
(1)由,周長,解得,即可求得標(biāo)準(zhǔn)方程.(2)通過特殊情況的斜率不存在時(shí),求得,再證明的斜率存在時(shí),即可證得為定值.通過設(shè)直線的方程為與橢圓方程聯(lián)立,借助韋達(dá)定理求得,利用直線與圓相切,即,求得的關(guān)系代入,化簡即可證得即可證得結(jié)論.【題目詳解】(1)由題意得,周長,且.聯(lián)立解得,,所以橢圓C的標(biāo)準(zhǔn)方程為.(2)①當(dāng)直線l的斜率不存在時(shí),不妨設(shè)其方程為,則,所以,即.②當(dāng)直線l的斜率存在時(shí),設(shè)其方程為,并設(shè),由,,,由直線l與圓E相切,得.所以.從而,即.綜合上述,得為定值.【答案點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系中定值問題,考查了學(xué)生計(jì)算求解能力,難度較難.20.(1)(2)【答案解析】
(1)因?yàn)?,所以,由余弦定理得,化簡得,可得,解得,又因?yàn)椋?(6分)(2)因?yàn)?,所以,則(當(dāng)且僅當(dāng)時(shí),取等號(hào)).由(1)得(當(dāng)且僅當(dāng)時(shí),取等號(hào)),解得.所以(當(dāng)且僅當(dāng)時(shí),取等號(hào)),所以的周長的最小值為.21.(1)不能在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為市使用信用卡情況與年齡有關(guān);(2)①;②分布列見解析,,【答案解析】
(1)計(jì)算再對照表格分析即可.(2)①根據(jù)分層抽樣的方法可得經(jīng)常使用信用卡的有人,偶爾或不用信用卡的有人,再根據(jù)超幾何分布的方法計(jì)算3人或4人偶爾或不用信用卡的概率即可.②利用二項(xiàng)分布的特點(diǎn)求解變量的分布列、數(shù)學(xué)期望和方差即可.【題目詳解】(1)由列聯(lián)表可知,,因?yàn)?所以不能在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為市使用信用卡情況與年齡有關(guān).(2)①依題意,可知所抽取的10
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit 3 Where did you go(說課稿)-2023-2024學(xué)年人教PEP版英語六年級(jí)下冊
- Unit 6 Review Period 4 (說課稿)-2024-2025學(xué)年北師大版(三起)英語三年級(jí)上冊
- 《1、了解學(xué)習(xí)好習(xí)慣》(說課稿)-2024-2025學(xué)年二年級(jí)上冊綜合實(shí)踐活動(dòng)魯科版
- 《10 交通安全小常識(shí)》(說課稿)-2023-2024學(xué)年四年級(jí)上冊綜合實(shí)踐活動(dòng)長春版
- 23《梅蘭芳蓄須》說課稿2024-2025學(xué)年統(tǒng)編版語文四年級(jí)上冊
- 14《我要的是葫蘆》第一課時(shí) 說課稿-2024-2025學(xué)年語文二年級(jí)上冊統(tǒng)編版
- Unit5 The colourful world第三課時(shí)(說課稿)-2024-2025學(xué)年人教PEP版(2024)英語三年級(jí)上冊
- 2024-2025學(xué)年高中歷史 第四單元 工業(yè)文明沖擊下的改革 第12課 俄國農(nóng)奴制改革(2)教學(xué)說課稿 岳麓版選修1
- 2025合同約定的“滯納金”是否可以視為違約金
- 2025建安施工合同文本
- TMS開發(fā)業(yè)務(wù)需求文檔
- 關(guān)于公交隊(duì)長述職的報(bào)告
- 2023年1月浙江高考英語聽力試題及答案(含MP3+錄音原文)
- HI-IPDV10芯片產(chǎn)品開發(fā)流程V10宣課件
- 房產(chǎn)抵押注銷申請表
- 【課件】第三課 蒙娜麗莎 課件高中美術(shù)湘美版美術(shù)鑒賞
- 堤防工程重點(diǎn)難點(diǎn)
- 象數(shù)療法好療效
- A320系列飛行訓(xùn)練課程:電子飛行儀表系統(tǒng)概況
- 2020新版?zhèn)€人征信報(bào)告模板
- 東芝空調(diào)維修故障代碼匯總
評(píng)論
0/150
提交評(píng)論