![文科高數(shù)習(xí)題一答案在三中_第1頁(yè)](http://file4.renrendoc.com/view/9a334bfe1ed129374f3f5b1d694f5bce/9a334bfe1ed129374f3f5b1d694f5bce1.gif)
![文科高數(shù)習(xí)題一答案在三中_第2頁(yè)](http://file4.renrendoc.com/view/9a334bfe1ed129374f3f5b1d694f5bce/9a334bfe1ed129374f3f5b1d694f5bce2.gif)
![文科高數(shù)習(xí)題一答案在三中_第3頁(yè)](http://file4.renrendoc.com/view/9a334bfe1ed129374f3f5b1d694f5bce/9a334bfe1ed129374f3f5b1d694f5bce3.gif)
![文科高數(shù)習(xí)題一答案在三中_第4頁(yè)](http://file4.renrendoc.com/view/9a334bfe1ed129374f3f5b1d694f5bce/9a334bfe1ed129374f3f5b1d694f5bce4.gif)
![文科高數(shù)習(xí)題一答案在三中_第5頁(yè)](http://file4.renrendoc.com/view/9a334bfe1ed129374f3f5b1d694f5bce/9a334bfe1ed129374f3f5b1d694f5bce5.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
xx9x9
不存在4證明:當(dāng)x4
2
3是同階無(wú)窮小量
11x
(x0)1x當(dāng)x1x
1
和 當(dāng)x1時(shí),無(wú)窮小1x3 3
x)設(shè)當(dāng)x0時(shí),1cosx~asin2x,求a的值2
x32
2xx2(x
x1
5x
3x
1
sin
x2
limarctan
xcos
x2xcosx2
x31x
xx x
x
5xx2x212n
2x
x23x3212x23x32n
n
11 n1
11212
12n
3n13
3
5
(2nx22x
1
x
x11
1x
xn
(nN
4x32x2 x1x1x26x
3x222x4x5x
22
33x1x2
x01x21x01x21
lim
x2x(22)
xx21xx2x2x2
33xx
x21
x211x23
1x1x31xx2 *9.若lim
x
axb0,求ab的值x2sinlim
2 2
x0sin2x x0sin
lim2arcsinx0sin2
x1x1
lim2nsin
sin3x
3x25x5x
sin2xx
11x1
1xx2
1xlim11x
x x
x1x
x (18)lim12xx xx 2
x(19)lim2xx xx1xa 2x3 xxa
x2x1x xx
xx21
2 2 cot2xa
4,求常數(shù)axxa設(shè)函數(shù)(tt31,求(t2(t)2設(shè)fx)1x(x1,求fxf1x)f11
x設(shè)fx)
,求fx1)f
xx
x1
x設(shè)fx
x0,求f(x f(x21)
x設(shè)fx)
x
,求ff
x.x2設(shè)(x1
0x1x
,求(x)設(shè)函數(shù)zxyfxy,當(dāng)y0時(shí)zx2,求fx及z設(shè)fx)
0x1x
,求函數(shù)fx3的定義域設(shè)fx)為定義在(
a上的奇函數(shù),且fx)在
a上單調(diào)減少.試證明:fx)(
0]上也單調(diào)減少設(shè)函數(shù)fx)在(,內(nèi)單調(diào)增加,且對(duì)一切x有fx)g(x.ff(x)證明任一定義在區(qū)間( a)(a0)上的函數(shù)可表示為一個(gè)奇函數(shù)與一個(gè)偶函數(shù)之和xxy
1x
yarcsinx2x5xx4x5xx4y
xx
y y
1x1xx
求函數(shù)y
1x
(1)y (2)y2xex
10x10x (3)y (4)yex1111(5)y11111已知fx)sinxf(x)1x2,求(x及其定義域設(shè)函數(shù)f(x)的定義域?yàn)?0,求下列各函數(shù)的定義域f(x3
f(sin
f(xa)f(x
(a求函數(shù)yx21x當(dāng)x1x0.5時(shí)的增量2求函數(shù)y1x當(dāng)x3x0.2時(shí)的增量若fxcos2x,求
f(xx)f 下列函數(shù)fx)在x0sin
f(x)
x
f(x)
x
x
xf(x)
ex xsinx x
x函數(shù)fx)x2sin x 0x
在x0處的連續(xù)性sin設(shè)fx)
ax2 x x
,已知f(x)在x0處連續(xù),試確定ab的值
x xsinx x設(shè)fxax2 x
,要使f(x)在
內(nèi)連續(xù),應(yīng)當(dāng)怎樣選擇a111xx22x2 2
x
ex2
x0arcsin(1
3sinxx2cos
x0(1cosx)ln(1求證:當(dāng)x0sinsinx~ln(1x13x23x求函數(shù)f13x23x*38.若
x22xkx3
4,求k的值*39.若
x2axb1x
5,求ab的值根據(jù)連續(xù)函數(shù)的性質(zhì),驗(yàn)證方程x53x112之間證明方程sinxx10在開區(qū)間 內(nèi)至少有一個(gè)根22 22 試證方程x2x11的正根試證方程xasinxb,其中a b0,至少有一個(gè)正根,并且它不超過(guò)ba證明方程x33x2x30在區(qū)間
證明曲線yx43x27x10在x1與x2值之間至少與x軸有一個(gè)交點(diǎn)*46.若函數(shù)f(x)在閉區(qū)間 b上連續(xù),f(a)a,f(b)b.證明:至少有一(a, b),使得f)(1)yx23x (2)ysin(3x一物體的運(yùn)動(dòng)方程為st310,求該物體在t3時(shí)的瞬時(shí)速度求在拋物線yx2上點(diǎn)x3處的切線方程33求曲線yx33
在點(diǎn)
0處的切線方程曲線yex1上哪一點(diǎn)處的切線與直線2xy10x試求曲線y 2在它與直線yx的交點(diǎn)處的切線方程和法線方程x求曲線(5y2)3(2x1)5在點(diǎn)
1處的切線方程和法線方程55確定ab之值,使曲線yx2axb與直線y2x相切于點(diǎn)
設(shè)曲線f(x)x3ax與g(x)bx2c都通過(guò)點(diǎn)線,求abc的值
0,且在點(diǎn)
0*56.設(shè)函數(shù)f(x)可導(dǎo),且fx)0,證明曲線y1fx)與曲線y2fx)sinx切設(shè)f
)3
f(x0x)f(x03x)設(shè)f(32,求limf3hf3 設(shè)fx在xa處可導(dǎo),求limfanhfamh)1sin2xx
x*60.設(shè)f(x) ,求f(0),f 2
x xx*61.設(shè)g(x)
2cos
x
1,又f(x)在x0處可導(dǎo),求1
f
x00,
x*62.設(shè)函數(shù)f(x)在x1處連續(xù),且
fx)2,求f(1
x1x1xyx
y
x11x x15xx1xy(215xx1x11x(5)y 11xx(7)yx
(8)yxx1xyyexx(13)yx
(12)yarcsin2yarccot11xy
1xx
y2y 2
yexsin2ycosln(1 (20)ylnln1x1x
arcsin
yarcsinxylntanxcosxlntanx
ysinxxcosxxsinysec2xcsc2 (26)y *(27)y(xa)a1(xa)a2(xa x(28)y x
1x2y
y(1x22x11111
xx33x2x3333(3xy 1x2y2xy (2)y22axyb(3)yxln(5)arctan(xy)x2x2y
(4)y1xearctany確定y是x的函數(shù),求yxxy方 a0確定y是x的函數(shù),求yxyyf
)ef
y
xyf(exxe已知f1
,求f(x
yf(sin2x)f(cos2x
1 yx2sin(5x
yln(1x2yxln (4)y(1x2)(5)yxe (6)ycos2xln求下列函數(shù)的二階導(dǎo)數(shù)(其中函數(shù)fx)二階可導(dǎo)yf(ex
y
f(x)fyf(x)ef (4)y(lnx)f(x2f(5)yf(x2)lnf f(x)設(shè)函數(shù)yy(x由方程eyxye確定,求y(0)設(shè)函數(shù)yarctan(3x),當(dāng)x x0.04時(shí),求dyy
1x
yexxyx(5)y(exex
(4)y1x(6)1x
1xx
求函數(shù)yex當(dāng)x由9變到8.99的微分求由ysin2xxln(3t1復(fù)合而成的復(fù)合函數(shù)的微分
1x
四、中值定理·ln(1x)lnx1,(x0)xpbp1(abapbppap1(ab0<a<b,p設(shè)fx)在
1f1)0,又F(xx2fx.證明在
存在一點(diǎn),使F()0x33x2
xx1
x
x
nx1xn
(1x)a1
(a為任何實(shí)數(shù)
xaxx2 x
xa
aa
exex
ex
x0x
ex2
ln(12x0cosxlnx
2 2
x1xln2
tan
tanx xn
x0xsin1x1x
(na0
exex2xxsinx
tan
lntan2xtan x0lntan2
ln(1x2
x0secx3ln113
sinx x
xarctan
arccot
x0xarcsin
cosxln(x x
ln(exea (27)lim3xln
(28)limxmln
(m (30)lim 1xx0x
e1
x1x
1
lim x0ln(1 x
x0
xtanx2 2
limxex
lim
x 1lim(2x)ex
1 (38)lim
x0x
x2x
x
cosx2
2 2*(41)
xln(ex
1 2x1cos*(42) 2x1cos1
1
*(44)lima1xa2xanx x
2xx證明函數(shù)y2xx
上單調(diào)增加,而在區(qū)間
y2x312x218x
yx42x2y(x2)5(2x (4)yxln(1(1)
3xxx
(x
xln(1
(xln(1x)1
(x2x22
ln(1x)x
(x
sinx12
(0xarctanx
(x0),arctanx
(x0)y2x3(3)y2x36x218x
(2)y2x2x(4)y1x41x3xy(x1)2(x
y
xln3x3xy(x1) (8)y3x3x2xx2xx(9)y (10)yx2xyx55x45x3 yx2x
y
1xx1xx2
[0,x 求函數(shù)y1x的單調(diào)區(qū)間,并求該函數(shù)在區(qū)間
,1上的最大值與最小值 試證方程x3x10只有一個(gè)正實(shí)根方程xexa(a0有幾個(gè)實(shí)根倍.(1(1x)3
x2sinx1
xx
x22x222xx
1x2
x 11x1xx
12x23x51x2 x
xbe
sin2cos2
4sin3x1sin2
2
2x2 cos2x cosxsinx
1cos21cos2xf
f
f(x)xf設(shè)fsin2xcos2 x1,求f(x)11x已知一個(gè)函數(shù)的導(dǎo)函數(shù)為f(x) ,并當(dāng)x1時(shí),這個(gè)函數(shù)值等于311x2函數(shù)F(x)已知曲線yfx上任一點(diǎn)的切線的斜率為ax23x6x1y112值,求f(x)和f(x)的極小值已知fx)的圖形過(guò)點(diǎn)
f(x)的圖形是過(guò)點(diǎn)
3是f(x)的極值,求f(x).3
(abx)k
(b
(12x)233(3)33
xxxx x311xx(9)cosxxcosxsinxdx12sinxcosxln11
xe2x2cos2xsin2(10) dx1cos2lnxx xx(x(15)
(14)sinsin3xcos5cos3
cos3xsin4xdx4
sin
(22)(tan2xtan4 1tanx
23x2
2x x28x
4x4x2
22
xxx
x dx
x dxx2x
x6xx53(1x3)2
lntan 2sin14149x1
1ex1ex111ex (36)ex1x2x(1x)100
x(13x1
1
exx
33
a2a2xx2x2a
dx3(x2a2)349x49x xx2x
dxx2x23x23x2x2x2ax(1)x(3)xcosx(5)xsin
(2)(4)(6)x sin2xcosxln
sec3x2
x1xx
e2xsinx2sinln(15)xln(1x2lnx
(14)(arcsinx)2x2ln(1lnsin
xx
sin2
x2
ex
x
arctane*(23)xexsin設(shè)fx的原函數(shù)為sinx,求xf(x)dxx設(shè)f(ex1x,求fx)(1)x1 (x1)(x(1)
x34x3x3x3x
x5x4x3 (x1)(xx
x2*(6)(x1)2(x1)xf(x)x
1
3 f(x)0sint f(x)
x2 11t0
f(x)1xx2
2e2f(x)x3e (6)f(x)xe2f(x)2tanln(t2e
x3
f(x)
cosxcost sinx1 *104.設(shè)f(x)是連續(xù)函數(shù),且xtf
ft)dtx,求f1 x105.設(shè)F(x)
x
,其中f(x有連續(xù)的導(dǎo)數(shù)且f0)0.研究:(1)F(x
xx0處的連續(xù)性;(2F(x在x0處的可導(dǎo)性00*106.試求由yetdtxcostdt0所確定的隱函數(shù)對(duì)于x的導(dǎo)數(shù)y00*107.設(shè)xy2yxcos2tdtdy0xcos2
xarctanxlim
lim x判斷函數(shù)fx)x3t1dt在區(qū)間
1上的單調(diào)性0t2t求函數(shù)fx)xtetdt的極值0求函數(shù)fx)xt(t4)dt在0
5上的最大值與最小值*112.設(shè)函數(shù)f(x)在
內(nèi)可微,且fx)11xft)dt,試求f(x)x6(2cos20
2cosxsin02sin(1sin3
x ex1ex
e1lnx(7)0exex xx1lne3a23a2ra2
(a2x22x設(shè)fx在
b上連續(xù),試證bfx)dxbf證明afx2dx2afx2dx,其中fx為連續(xù)函數(shù) 1
x1xx11
(x0)證明1xm1x)ndx1xn1x)mdx 1 (1x)1211x
42a42
x2 x 2
a2x2x2x x2x0(1x2)2
x5x1
01x1 55 ln
xsin(2x2
ex
01sin(x2已知2ln2 dx,求aexex 0
2
2excos000
0201e0xarctan 1e
xsin(7)
x
(8)0
3x
x2cos0
eeeb121.已知常數(shù)b0,且1lnxdx1,求b的值b
x*122.設(shè)fx)*122.設(shè)fx)
f(x1)dx2 2
xyax2a0與x軸所圍成的圖形yx23在區(qū)間[0,1]上的曲邊梯形yx2與y2x2所圍成的圖形yx3與直線x0y1所圍成的圖形在區(qū)間
上,曲線ysinx與直線x2
y1所圍成的圖形y1與直線yx
x2所圍成的圖形曲線yx28與直線2xy8 y4所圍成的圖形求由拋物線yx24x5,橫軸及直線x x5所圍成的圖形的面積求由曲線yxex2,橫軸及直線x x1所圍成的圖形的面積求由曲線ylnx,縱軸與直線ylnaylnb(b>a>0)所圍成的圖形的面積求由拋物線y32xx2與橫軸所圍成的圖形的面積拋物線y1x2分割圓x2y28成兩部分,分別求出這兩部分的面積2求下列平面圖形分別繞x軸、y軸旋轉(zhuǎn)產(chǎn)生的的體積x曲線y 與直線xx
x
y0所圍成的圖形在區(qū)間 上,曲線ysinx與直線x y0所圍成的圖形 2 曲線yx3與直線x y0所圍成的圖形曲線x2y21與y23x所圍成的兩個(gè)圖形中較小的一塊2求曲線xya(a0與直線xa,x2a及y0所圍成的圖形繞x體的體積設(shè)平面圖形由yexyex0所圍成,(1)求此平面圖形的面積;(2)求此平面圖形繞x軸旋轉(zhuǎn)所形成的旋轉(zhuǎn)體的體積.ex
dx (3)xexx x
(5)exsin
arctanx 11x
0
x(a
0(1
0x24x計(jì)算yex與直線y0之間位于第一象限內(nèi)的平面圖形繞x軸旋轉(zhuǎn)產(chǎn)生的旋轉(zhuǎn)體的xx證
limxlim11,
limxlim(1)xx0x
x0
x0
x0
x即xx0
xx0x
,∴
不存在xxx證
4x4x9x(4x4)(9x(9x9)(4x
399x4x49 24911xx
1 5.(1)為同階無(wú)窮小(2)為等價(jià)無(wú)窮 6.a7.(1)解
(x 3
0x2x (根據(jù)無(wú)窮大與無(wú)窮小的關(guān)系 (3)解當(dāng)x10sinx
1式=0 (6)11cos(7)解原式=lim 1.
x21cosxx21
1x
1.(無(wú)窮小量分出法x2x2x
x21 x(2)0(利用無(wú)窮小量分出法
xx
x
x3(2x1)x2(2x2x2x2
2x
(2x21)(2x1
x3x
1x(2x21)(2x
x
1
1 2x2
x1x1x31x
x2x23x3
(6)
(9) n1
35
5
(2n1)(2n1) 1133 33 lim11
1
n21
2n1 (2n1)(2n
2n
2n1A(2n1)B(2n1) 比較等式兩邊n的同次冪的系數(shù),2A2B A1AB
B1于 1
.(此法稱為待定系數(shù)法(2n1)(2n
22n
2n(10) (12) (13) (14) (15) (16)
x2
3x3x1((x21)(3 (17)2
(18) 2
2
(21) 3
(24)(25)
11x31x
3(1x)23(1x)2 1x312解原式
x21(axb)(x1)x1(1a)x2(ab)x1x
1aab
a1,b
x2sinlim
xsinlim
x0sinx(2) (3) (4) (5) (6)
x1x1
x
2 2 (9)2
sin2
x0sin23x2 2
3x
sin
lim 2
5x
x x5 xx xx 1x11x1
2
limsinx1x1xx0sinxx
1x
1x 1x
1x解
lim1x xx
x x
e1e
x
1x1x
1x
(1x)
(1x)1
1x
1x
xe
e
e
e
e
xx
x2 x2
x
1
x1
22x21x2
x21x
x21
x2
xe0e (26)e
t61;t62t31x1
(x1)
(x2);x1x
(x1且xx1x解
(x2);
(xx1f(x1)
x1f(x21)
x1x;xx21x21x211
x.x解令x1t,則xt (t1)2
0t1(t)2(t1)(t1)22(t1)
1t11t,2t(x1)2∴(x)2(x
1x2xf(x)x2x;z(xy)2
21. 22.
00,
01,(1)y
21
,(0x
y12
x
(x0或xyln1x,(1x1
y1
x5,(xy10x12,(
y
(1x(x)arcsin(1x2); 2(1) (2)k1 (k1),k
或k1 k,k2 2
2(3)當(dāng)0a1時(shí),定義域?yàn)閍22
a;當(dāng)a1時(shí),定義域?yàn)?
x
limf(x)
x即f(x)在x0處的極限不存在,所以f(x)在x0處不連續(xù)解limfx)limx2sin10f0) f(x)在x0處連續(xù)解limfxlimex1limfx
sinx1,f(0)f(x)在x0處連續(xù)
limf(x)lim(ax2)a,f(0)1
f(x)
f(x)在x0即a1lnb1,即a1be
f(x)
f(x)f解當(dāng)x0或x0時(shí),f(x)為初等函數(shù),連續(xù). 要使f(x)在(,)內(nèi)連續(xù),當(dāng)且僅當(dāng)f(x)在x0處連續(xù).∵limf(x)
xsin10,limf(x)lim(ax2)a,f(0)a∴a0
x22xx2
122112
2(2)12
(3)1
ln(1xx在x0處不連續(xù),所以不能直接利用連續(xù)函數(shù)求極限的法則x1令(1x
u,當(dāng)x0ue
lnu在ue 1limln(1xxlnlim1xxlne (6)2
sinsinxsin證x0ln(1
111
33(,1)
解設(shè)f(x)x22xkx3x30fx)為x3即有l(wèi)imfx)0f(x是連續(xù)函數(shù),∴有l(wèi)imfx)f3)0,即3223k0即k3解設(shè)f(x)x2axb,∵x1時(shí),1x0,∴有l(wèi)imf(x)0 又∵f(x)續(xù),∴有l(wèi)imfx)f1)0,即1ab0,即b1
x2ax1a1x
(x1)(x1)a(x(x
lim[(x1)2a5,即a7,代入(1),得b6∴a7,b6. 41. 42.43.證設(shè)fx)xasinxbfx)在[0baf(0)b0,f(ba)baasin(ba)ba[1sin(ba)]0當(dāng)fba)0ba當(dāng)fba)0,則在(0ba內(nèi)至少有一點(diǎn),使f)0即為所求.44. 45.46.證設(shè)g(x)fx)xg(x在[ab上連續(xù)∵g(a)f(a)a0,g(b)f(b)b0g(x)0在(ab內(nèi)至少有一個(gè)根,即,至少有一點(diǎn)abg(f0,即f)47.(1)y2x (2)y3cos(3xv(t)ds3t2,v(3)
y6xy34(x
x2y30
2xy1解在方程兩邊對(duì)x3(5y3)25y5(2x1)4將x0y1代入上式,整理,得y2 所求切線方程為y12x,或10x15y30 法線方程為y13x,或15x10y20 a2,b
a1,b1,c證設(shè)兩曲線的交點(diǎn)為(x0y0),則有fx0)fx0)sinx0,已知fx)0sinx01,從而有cosx00.y1(x0)f(x0y2(x0f(x0)sinx0fx0cosx0f(x0),即,在交點(diǎn)(x0,y0處兩曲線的切線斜率相等,所以兩曲線在交點(diǎn)處相切.解原式=limfx0xfx0fx03xfx0
f(x0)3f(x0)33(3)(nm)ff(x)f
x
x
sinx解∴f(0)
sin2x當(dāng)x0f(x)
sin2x ,(2sinxcosx)xsin2xxsin2xsin2, ∴f 2
02
x x4 2
dfg(x)fg(x)g(x)x2cos1limg(x)g(0)
limxcos10,即g(0)0
∴dfg(x)
fg(x)
fg(0)g(0)f(0)00解limfx)2,∴當(dāng)x1fx)與x1為同階無(wú)窮小,即有l(wèi)imfx)x1xf(x在x1處連續(xù),∴有f1)limfx)
從而
f(x)
fxf1)2
x1x
x
15x2x2x2(1x)1
(2)
112x 2x
45x3115x1(1(1x2)1x1
1
2xln1
12x
xx1x2x(1x2
ln5
5lntan
(11)ex(cosxsin
1414x1212xx
1x
1x(16)
1x
x(1(1x2)1x
2arcsin24x
1
xln11x
x(cosxxsin
sec22
xcsc2
cot24
lnya1ln(xa1)a2ln(xa2)anln(xan)1yy
x
axaa
a xaan an
a
an ∴y(xa1
(xa2
(xan
x
x
x 1 2 n
lny1lnx,1y1lnx111(1lnx) x x x∴y
1x (1lnx)xxx
1x 1x
n1 1xx 1x
lnysecxln(1x2
2x
(2x1ysecxtanxln(1x2)secx
,1x
2x
1x22x 1x2
lnylnx1ln(1x)ln(1x),21 1
1xxy 2 111 111
1x 1x
x(1x)(1x)∴y (1x)(1x)
x3x33x2x 2 2 3x 2x 2 2x2
x 1
(3 1 3(9x 64.(1)解在方程兩邊對(duì)x
yy2x2y
2x2yyyxy0y
yax
y
y1
ey1xe
tan2解在方程兩邊對(duì)xx2x22x2
(2x2yy)
y
xy x1 xxyyxyy ∴yxyx2yxyyx
x2y2
x67.(1)
yf(ex)exef(x)f(ex)ef(x)fef(x)exf(ex)f(ex)f(2)
1xx2xxx2x
(exexe1)f(exxe68.
22x
x
2arctanx
1x2x(2x2
2cos2xlnx2sin2x x
cos2
yf(ex)exexf(ex),yexf(ex)exf(ex)exexf(ex)e2xf(ex)
y f12ff2ff12ff2fy
2f(x)f(x)f3.3f
ef(x)f(x)2f(x)2f(x)f(x)f(x)f(x)2x
f(x2)4f(x2)2(lnx)f(x2)4x2(lnx)f(x22f(x
)4x
(x2)
f(x)f(x)f解在方程兩邊對(duì)xeyyyxy
再在(1)兩邊對(duì)xey(y)2eyyyyxyey(y)2(eyx)y2y
當(dāng)x0時(shí),由原方程解得y1 將x0,y1代入(1),得y(0)1e將x0y1y1代入(2),得y(0)1 e1x73.(1)(1x2)2
1x
cosxcos2
2x2xx
xxxx212
xx
sin
74.解由題設(shè),x由x09變到x0x8.99,得x12ye ,12
ex 1e3 1
2
∴所求微分dyf(x0x6
(0.01)
3t
sin2ln(3t證設(shè)ft)lnttx,1x(x∵f(t)在x,1x上滿 ∴在(x,1x內(nèi)至少存在一點(diǎn)f(1x)f(x)f()[(1x)x],即 ln(1x)lnx1x1x,∴ 11,從而1 11
ln(1x)lnx1x提示:設(shè)f(x)xp,x[a,b].利用日中值定理證證F(x在[0,1根 定理,在(0,1)內(nèi)至少有一點(diǎn)1,使得F(1)1又F(x2xf(xx2f(x,它在[0,內(nèi)連續(xù),可導(dǎo)1 定理,在(0,1)(0,1)內(nèi)至少有一點(diǎn),使F()79.(1)
n
(3)
(7)
(8)
(9) (11)2
3(13) (15)1xln(11x
exx1xexx1xex1x1x
13
7
x
11ex
lntan7x
ln7x
7xlim11x0lntan
x0ln
x0
(當(dāng)x0時(shí)tan7x~7xtan2x~2x
00
211
2
limxarcsinxlimxarcsin
(x0,sinx~
sin3
x3x3x21x2(1x2000
11111x
11x213x21x
(1x2)
13131x2(1x2 (22)
解
cosxcosa
x
ex
0e0exaln(exea
exex
xaex(x
xaex(xa)ex 0
∴原式=
cosxxaln(exea
cosa1cosa (29)12
12
13
lim(2x)exxlim2exxex1
1∵lim2ex
2e02
11
ex limxex1limex10
x
lime
e0x
1x
∴原式2131
ln(1sin解令y(1sinx)x,則lny x00
cos
x01sinlimyeee
(40)e
(42)e1(43)解令yarctanxlnx,則lny
ln
2 2
lny
1x00
1x2x
1x
xarctan211x
1x
x1
2x2x
∴
ye1e1
1(44)解令ya1xa2xanx ,
1 lnynxlna1xa2xanxlnn, 1lna1xa2xanxlnlimlnynlim
x
1
1a1xlna1a2xlna2anxlnanx20a1xa2xanx0x
n
a1xlna1a2xlna2anxlna
a1xa2xannlna1lna2lnn
ln(a1a
an)limya1a2an,即原式x
a1a2
nnai80.
y6x224x186(x1)(x3)令y0x11x23x+—+y↗↘↗(
)
)(
111
1
2211
2 182解函數(shù)的定義域?yàn)?1,y1
1
,令y0x0當(dāng)1x0y0;當(dāng)x0y0∴函數(shù)的單調(diào)增加區(qū)間為
;單調(diào)減少區(qū)間為
82.(1)證設(shè)fx)
31f(x)在[1,xxxf(x)f(x)在(1,上單調(diào)增加
1x211x3x x1x3
,(xf10,∴當(dāng)x1時(shí),有fxf10.x 31,(xxx(3)證設(shè)fx1xln(1xarctanxf(x)ln(1x)1
1x
0,(x∴f(x)在(0,)上單調(diào)增加 又∵f(x)在[0,)上連續(xù),且f(0)0∴當(dāng)x0時(shí),有fx)f0)0(1x)ln(1x)arctanx0
ln(1x)arctanx,(x183.(1)解函數(shù)的定義域?yàn)?, y6x26x6x(x1,令y0,得駐點(diǎn)x0x x01+—+y↗極大↘極小↗x10為極大點(diǎn),函數(shù)的極大值為y(0)0x21為極小點(diǎn),函數(shù)的極小值為y(1)1y(1)1y(1)1y(0)y(1)17y(3)y(0)0y(1)
,y(2)3y(10y75
y(e)解函數(shù)的定義域?yàn)?,y
(x1)213x3x3
,令y0
255x335x33x0 5252 +—+y↗極大↘極小↗34 234x15為極小點(diǎn),函數(shù)的極小值為y55
x20 函數(shù)的極大值為y(0)0y(1)1y(0)y(0)4y(2)31 2
y5x420x315x25x2(x1)(x3)令y0,得駐x10x21x33(舍去∵y(1)10,y(0)1,y(1)2,y(2)7∴函數(shù)的最大值為y2;最小值為y10y8yy1y5單調(diào)增加區(qū)間為(
單調(diào)減少區(qū)間為(
函數(shù)在 2,1上的最大值為2,最小值為0證設(shè)f(x)x3x1,∵f(x)3x210,∴f(x)在(,)上單調(diào)增加 f(x在[0,1f(0)10,f(1)10∴由根的存在定理及f(x的單調(diào)性可知,方程fx)0在(0,1)內(nèi)有且僅有一個(gè)實(shí)根,即方程只當(dāng)ae1時(shí),方程無(wú)實(shí)根;當(dāng)ae1當(dāng)ae1時(shí),方程有兩個(gè)實(shí)根解設(shè)容器的底邊長(zhǎng)為x,高為yx2y108,即y108x
Ax24xyx2432,(xxA2x432,令A(yù)0x6x 現(xiàn)在只求得唯一駐點(diǎn),故當(dāng)?shù)走呴L(zhǎng)x6米 當(dāng)x6時(shí),y3. 即容器的底邊長(zhǎng)6米,高3米時(shí),所用材料最省.當(dāng)?shù)走呴L(zhǎng)x6米,高y3時(shí),所用材料最省當(dāng)土地的長(zhǎng)x18米,寬y12米時(shí),所用建筑材料最省3當(dāng)池底半徑r 3
2cosxlnx
2x2x333
3x3222
6x3555
3x3888
2
x2
2x7
x4
4
arcsinxarctanx1x
x1x3arctanx32x
2
bxebxxcosx(12)xsinx(14)1tanx1x
4cosxcotx(13)sinxcosx2
f(x)dxdf(x)f(x)C(2)解f(2x)dx1df2x)1f2xC (3)xf(x)f(x)x1x22
F(x)arcsinxfx)x33x26x2,極小值為f2)2解由題意,設(shè)f(x)k(x1),k0 從而
x f(x)
f(x)dx
k(x1)dx
xC∵f(x)的圖形過(guò)點(diǎn) 3),∴有f(0)C3x fx)
x3f(x)是可導(dǎo)函數(shù),且x1x1是f(x)的極值點(diǎn),即有f1)k1132,解得k22 2 x ∴f(x)
x3
2x397.(1)解當(dāng)k1時(shí),原式=1(abx)kd(ab1b
k
(abx)k1C當(dāng)k1時(shí),原式=1 d(abx)1lnabxC.解
a dx
(12x)2d(1 232
2
(12x)21C32
1
C33331
21
(31
2xx
(32x)
C
(32x)3C4x1(xx3
1(x1) 1x1x3
dx2
d(x
)2
1x2
1x1x1x211(1x2)2(1x21x212
1(1x22
2d(1x213131x (1x2)2(1x2)2C3
C1e2x21C
1sin(x)1x8
1sin4xC
x x解 dx dx dxtanxC.1cos
x2 2cos22
cos2 2
cosxsinx12sinxcosx
dx
d(sinxcosx)(sinxcosx)2
sinxcosx2lnx1(lnx)2Cln11
ln11
ln11 x
x
x 1解
dx
dx
d1 x(x
2 1
1
xx1 1 1 1 1ln1xdln1x2ln1x
C 3x1sin2x1sin4x (15)sinx1sin3x 解sin3xcos5xdxsin2xcos5(1cos2x)cos5xd(cosx)(cos5xcos71cos6x1cos8xC 或sin3xcos5xdxsin3xcos4xd(sinxsin3x(1sin2x)2d(sin(sin3x2sin5xsin7x)d(sinx)1sin4x1sin6x1sin8xC1lncos5xC
13
sin3
Csinx2
2sin2x tanx1tan3xC
1tan3xtanxxC1tan3x3322
1tanx6262
1
arctan
x28x
(x4)2
22x41
dx4
1arctanx4C 31x4 3 3 解 1 4x14x1x22
arcsin2 darcsinxlnarcsin
C2arcsin 2xxx
2 14x 121(2x14x 121(2x1(2x131ln(x2x1)132
arctan2x131lnx26x134arctanx33
81(1x3)388
51(1x3)355lntan
lntan
lntan 2dx
xcos
xdx2
2
x2
xdxx x 1 xlntan2dlntan22lntan2
C 1arcsin3x2 2
dx 1
1ex1
edxdx1exex
1ex
xln1
C (36)2lnex1x98.(1)解令1xt,則x1tdxdt原式
t100
dt
12ttt100
t
1
t
1
t
1
1t1
1
1
C解令xt6,則dx6t5dt 原式t3(1t2dt611t2dt6(tarctant 66x6arctan6xC.解
t,則xt21dx2tdt1原式2tdt211dt2t2ln1t11
1t1ex 2ln(111ex解
t,則xlnt21dx
t2
dt原式
1dt
1dtlnt1lnt1t21 t
tttt
C
Cex1ex11解令ex1ex11原式
costcos3
dt
dttant1x1x1x1x1x1x2a22
arcsinx
a2x2解令xatant,則dxasec2tdtx2ax2aax2x2ax2aax2a
Clnx
Cx2a1 x2a1
1ln3x C49xarccos149xx
x2x21
33
3x
aarccosax2x2a3x23x2
te2tdt1td(e2t)1te2te2tdt 1te2t1e2td(2t)1te2t1e2tC (x22x2)ex
2xsinx4cosx 1x21xsin2x1cos2x 解xsinxcosxdx1xsin2xdx1xd(cos 1(xcos2xcos2xdx)1xcos2x1sin2xC 2xtanxlncosxx221secx1lncscxcotx 解sec3xdxsecxd(tanxsecxtanxtan2secxtanx(sec2x1)secxdxsecxtanxsec3xdxsecxtanxsec3xdxlnsecx sec3xdx1secxtanxlnsecxtanxC2xln2x2xlnx2x3解x2arctanxdx1arctanxd(x33x
x x
1 3arctanx31x2dx3arctanx3x1x2x
1d(1x23arctanx3xdx6
1xx33
arctanx262
1ln(1x6
)Cxarctanx1ln(1x2)1(arctanx)2
2e2xcosx4sinx2 2
sinlnxdxxsinlnxcoslnxsinlnx(xcoslnxsinln sinlnxdxx(sinlnxcoslnx)C21xx(arcsinx)2 arcsinx1x
2
)ln(1x2)x222
13
1)ln(1x)393
x6
xC1(lnx)22lnx2
(19)
(x11xxex1ex11xxex1ex1exlnx
exarctanexx1ln(1e2x)2xex(sinxcosx)1excosx 解xf(x)dxxd(fxxfxxf(x)sinxx
sinx xcosxsin∵f(x) x
xf(x)dxxxcosxsinxsinxCcosx2sinxC102.(1)解
xx
A (x1)(x
x1 xx1(AB)x2AB,
AB
A2AB1,解得B3 ∴原式=23dx2lnx13lnx2C x1 x2 x111解原式=
dxx1
4x3xx1令 A
4x3
x(2x1)(2x
2x
2x x1(4A2B2C)x2(BC)xA44A2B2C
A BC
,解得B A1
C ∴原式=117 91 dx4x8 2x1 82x4x8xlnx71d(2x1)91d(2x 8 2x 8 2xxlnx4
7ln2x1
9ln2x1C1x33x29x27lnx33x33
x2
x8lnx3lnx14lnx1
x21x2x1 AxB
Cx,(x21)(x2x x2
x2x得1AxB)(x2x1CxD)(x2(AC)x3(ABD)x2(ABC)xBD AC AABDABC
B,解得C BD D
x
dx
d(x21)
(2x1)1∴原式=
x2
x2x
2x2
2x2x1
d(x2x 2
1)2
x2x
2x2x1ln(x21)1ln(x2x1) 2x2x ∵2x2x12x
1
33
2x121 3 2 3132x3 2x132x32 212x
3 3
C3 32x2x313∴原式=1ln1 13
C x2x21
解令
(x1)2(x
(x
x1
x得x21A(x1B(x21C(xBC)x2A2C)xABC,比較等式x同次冪的系數(shù),得 BCA2C
A,解得B12ABC C1
2
1
(x
2x
2x1 1lnx11lnx1C 1lnx21Cx x 11x (2)3x2sinx11x
f(x)0etdt
etdt
edt
etdt22
ex3(x3)ex2(x2)3x2ex32xex2
f(x)2x02x
e2tdtx2e4xe2tdt2xe4x
e4xe4xextanln(e2x
sinxcoscos1cos2
cosxcossin解xf(x31)3x21,f(x31)
13x3t33(t令x313t33(t
,即f(x) 33(x3333(x3336x105.(1)∵limF(x)lim0tfx
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年揭陽(yáng)貨運(yùn)從業(yè)資格證考題
- 2025年德州下載b2貨運(yùn)從業(yè)資格證模擬考試考試
- 2025年商丘駕??荚囏涍\(yùn)從業(yè)資格證模擬考試
- 電視臺(tái)合同范本(2篇)
- 電力服務(wù)績(jī)效合同(2篇)
- 山西省陽(yáng)曲縣八年級(jí)地理上冊(cè) 第二章 自然環(huán)境 我們賴以生存的基本條件說(shuō)課稿 晉教版
- 2024-2025學(xué)年五年級(jí)語(yǔ)文上冊(cè)第二單元5裝滿昆蟲的衣袋教案設(shè)計(jì)蘇教版
- 2024-2025學(xué)年高中歷史第四單元中國(guó)社會(huì)主義建設(shè)發(fā)展道路的探索第19課經(jīng)濟(jì)體制改革教案含解析岳麓版必修2
- 馬栗種子提取物片說(shuō)明書
- 湘教版地理八年級(jí)下冊(cè):9 建設(shè)《永續(xù)發(fā)展的美麗中國(guó)》 聽課評(píng)課記錄
- 招商銀行房地產(chǎn)貸款壓力測(cè)試
- 公文與公文寫作課件
- 車削成形面和表面修飾加工課件
- 運(yùn)動(dòng)技能學(xué)習(xí)與控制課件第七章運(yùn)動(dòng)技能的協(xié)調(diào)控制
- 節(jié)后復(fù)工吊籃驗(yàn)收表格
- 基于振動(dòng)信號(hào)的齒輪故障診斷方法研究
- 醫(yī)療器械分類目錄2002版
- DB11_T1713-2020 城市綜合管廊工程資料管理規(guī)程
- 氣管套管滑脫急救知識(shí)分享
- 壓縮空氣系統(tǒng)管道阻力計(jì)算
- 特種設(shè)備自檢自查表
評(píng)論
0/150
提交評(píng)論