內(nèi)蒙古烏拉特前旗一中2022-2023學(xué)年數(shù)學(xué)高三第一學(xué)期期末考試試題含解析_第1頁
內(nèi)蒙古烏拉特前旗一中2022-2023學(xué)年數(shù)學(xué)高三第一學(xué)期期末考試試題含解析_第2頁
內(nèi)蒙古烏拉特前旗一中2022-2023學(xué)年數(shù)學(xué)高三第一學(xué)期期末考試試題含解析_第3頁
內(nèi)蒙古烏拉特前旗一中2022-2023學(xué)年數(shù)學(xué)高三第一學(xué)期期末考試試題含解析_第4頁
內(nèi)蒙古烏拉特前旗一中2022-2023學(xué)年數(shù)學(xué)高三第一學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函,,則的最小值為()A. B.1 C.0 D.2.拋物線的準(zhǔn)線方程是,則實數(shù)()A. B. C. D.3.已知向量,則向量在向量方向上的投影為()A. B. C. D.4.已知是定義在上的奇函數(shù),當(dāng)時,,則()A. B.2 C.3 D.5.已知函數(shù)且,則實數(shù)的取值范圍是()A. B. C. D.6.下列函數(shù)中既關(guān)于直線對稱,又在區(qū)間上為增函數(shù)的是()A.. B.C. D.7.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},則=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}9.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.10.雙曲線的右焦點為,過點且與軸垂直的直線交兩漸近線于兩點,與雙曲線的其中一個交點為,若,且,則該雙曲線的離心率為()A. B. C. D.11.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)12.甲、乙、丙三人相約晚上在某地會面,已知這三人都不會違約且無兩人同時到達,則甲第一個到、丙第三個到的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知滿足且目標(biāo)函數(shù)的最大值為7,最小值為1,則___________.14.已知函數(shù),若的最小值為,則實數(shù)的取值范圍是_________15.已知實數(shù)、滿足,且可行域表示的區(qū)域為三角形,則實數(shù)的取值范圍為______,若目標(biāo)函數(shù)的最小值為-1,則實數(shù)等于______.16.函數(shù)的圖象在處的切線與直線互相垂直,則_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知在三棱錐中,平面,分別為的中點,且.(1)求證:;(2)設(shè)平面與交于點,求證:為的中點.18.(12分)如圖,在正四棱錐中,,點、分別在線段、上,.(1)若,求證:⊥;(2)若二面角的大小為,求線段的長.19.(12分)已知數(shù)列的前n項和,是等差數(shù)列,且.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)令.求數(shù)列的前n項和.20.(12分)以直角坐標(biāo)系的原點為極坐標(biāo)系的極點,軸的正半軸為極軸.已知曲線的極坐標(biāo)方程為,是上一動點,,點的軌跡為.(1)求曲線的極坐標(biāo)方程,并化為直角坐標(biāo)方程;(2)若點,直線的參數(shù)方程(為參數(shù)),直線與曲線的交點為,當(dāng)取最小值時,求直線的普通方程.21.(12分)在中,內(nèi)角的對邊分別是,已知.(1)求角的值;(2)若,,求的面積.22.(10分)某貧困地區(qū)幾個丘陵的外圍有兩條相互垂直的直線型公路,以及鐵路線上的一條應(yīng)開鑿的直線穿山隧道,為進一步改善山區(qū)的交通現(xiàn)狀,計劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,以所在的直線分別為軸,軸,建立平面直角坐標(biāo)系,如圖所示,山區(qū)邊界曲線為,設(shè)公路與曲線相切于點,的橫坐標(biāo)為.(1)當(dāng)為何值時,公路的長度最短?求出最短長度;(2)當(dāng)公路的長度最短時,設(shè)公路交軸,軸分別為,兩點,并測得四邊形中,,,千米,千米,求應(yīng)開鑿的隧道的長度.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

,利用整體換元法求最小值.【詳解】由已知,又,,故當(dāng),即時,.故選:B.【點睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應(yīng)用,是一道中檔題.2、C【解析】

根據(jù)準(zhǔn)線的方程寫出拋物線的標(biāo)準(zhǔn)方程,再對照系數(shù)求解即可.【詳解】因為準(zhǔn)線方程為,所以拋物線方程為,所以,即.故選:C【點睛】本題考查拋物線與準(zhǔn)線的方程.屬于基礎(chǔ)題.3、A【解析】

投影即為,利用數(shù)量積運算即可得到結(jié)論.【詳解】設(shè)向量與向量的夾角為,由題意,得,,所以,向量在向量方向上的投影為.故選:A.【點睛】本題主要考察了向量的數(shù)量積運算,難度不大,屬于基礎(chǔ)題.4、A【解析】

由奇函數(shù)定義求出和.【詳解】因為是定義在上的奇函數(shù),.又當(dāng)時,,.故選:A.【點睛】本題考查函數(shù)的奇偶性,掌握奇函數(shù)的定義是解題關(guān)鍵.5、B【解析】

構(gòu)造函數(shù),判斷出的單調(diào)性和奇偶性,由此求得不等式的解集.【詳解】構(gòu)造函數(shù),由解得,所以的定義域為,且,所以為奇函數(shù),而,所以在定義域上為增函數(shù),且.由得,即,所以.故選:B【點睛】本小題主要考查利用函數(shù)的單調(diào)性和奇偶性解不等式,屬于中檔題.6、C【解析】

根據(jù)函數(shù)的對稱性和單調(diào)性的特點,利用排除法,即可得出答案.【詳解】A中,當(dāng)時,,所以不關(guān)于直線對稱,則錯誤;B中,,所以在區(qū)間上為減函數(shù),則錯誤;D中,,而,則,所以不關(guān)于直線對稱,則錯誤;故選:C.【點睛】本題考查函數(shù)基本性質(zhì),根據(jù)函數(shù)的解析式判斷函數(shù)的對稱性和單調(diào)性,屬于基礎(chǔ)題.7、B【解析】

分別判斷充分性和必要性得到答案.【詳解】所以(逆否命題)必要性成立當(dāng),不充分故是必要不充分條件,答案選B【點睛】本題考查了充分必要條件,屬于簡單題.8、B【解析】

按補集、交集定義,即可求解.【詳解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故選:B.【點睛】本題考查集合間的運算,屬于基礎(chǔ)題.9、D【解析】

試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點:本題主要考查三視圖及幾何體體積的計算.10、D【解析】

根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點,再利用,求出點,因為點在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因為,即可得到,故選:D.【點睛】本題主要考查的是雙曲線的簡單幾何性質(zhì)和向量的坐標(biāo)運算,離心率問題關(guān)鍵尋求關(guān)于,,的方程或不等式,由此計算雙曲線的離心率或范圍,屬于中檔題.11、C【解析】

根據(jù)并集的求法直接求出結(jié)果.【詳解】∵,∴,故選C.【點睛】考查并集的求法,屬于基礎(chǔ)題.12、D【解析】

先判斷是一個古典概型,列舉出甲、乙、丙三人相約到達的基本事件種數(shù),再得到甲第一個到、丙第三個到的基本事件的種數(shù),利用古典概型的概率公式求解.【詳解】甲、乙、丙三人相約到達的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6種,其中甲第一個到、丙第三個到有甲乙丙,共1種,所以甲第一個到、丙第三個到的概率是.故選:D【點睛】本題主要考查古典概型的概率求法,還考查了理解辨析的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】

先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大最小值時所在的頂點即可.【詳解】由題意得:目標(biāo)函數(shù)在點B取得最大值為7,在點A處取得最小值為1,∴,,∴直線AB的方程是:,∴則,故答案為.【點睛】本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值的方法,屬于基礎(chǔ)題.14、【解析】

,可得在時,最小值為,時,要使得最小值為,則對稱軸在1的右邊,且,求解出即滿足最小值為.【詳解】當(dāng),,當(dāng)且僅當(dāng)時,等號成立.當(dāng)時,為二次函數(shù),要想在處取最小,則對稱軸要滿足并且,即,解得.【點睛】本題考查分段函數(shù)的最值問題,對每段函數(shù)先進行分類討論,找到每段的最小值,然后再對兩段函數(shù)的最小值進行比較,得到結(jié)果,題目較綜合,屬于中檔題.15、【解析】

作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合目標(biāo)函數(shù)的最小值,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標(biāo)函數(shù)可視為,則為斜率為1的直線縱截距的相反數(shù),該直線截距最大在過點時,此時,直線:,與:的交點為,該點也在直線:上,故,故答案為:;.【點睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法,屬于基礎(chǔ)題.16、1.【解析】

求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義結(jié)合直線垂直的直線斜率的關(guān)系建立方程關(guān)系進行求解即可.【詳解】函數(shù)的圖象在處的切線與直線垂直,函數(shù)的圖象在的切線斜率本題正確結(jié)果:【點睛】本題主要考查直線垂直的應(yīng)用以及導(dǎo)數(shù)的幾何意義,根據(jù)條件建立方程關(guān)系是解決本題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】

(1)要做證明,只需證明平面即可;(2)易得∥平面,平面,利用線面平行的性質(zhì)定理即可得到∥,從而獲得證明【詳解】證明:(1)因為平面,平面,所以.因為,所以.又因為,平面,平面,所以平面.又因為平面,所以.(2)因為平面與交于點,所以平面.因為分別為的中點,所以∥.又因為平面,平面,所以∥平面.又因為平面,平面平面,所以∥,又因為是的中點,所以為的中點.【點睛】本題考查線面垂直的判定定理以及線面平行的性質(zhì)定理,考查學(xué)生的邏輯推理能力,是一道容易題.18、(1)證明見解析;(2).【解析】試題分析:由于圖形是正四棱錐,因此設(shè)AC、BD交點為O,則以O(shè)A為x軸正方向,以O(shè)B為y軸正方向,OP為z軸正方向建立空間直角坐標(biāo)系,可用空間向量法解決問題.(1)只要證明=0即可證明垂直;(2)設(shè)=λ,得M(λ,0,1-λ),然后求出平面MBD的法向量,而平面ABD的法向量為,利用法向量夾角與二面角相等或互補可求得.試題解析:(1)連結(jié)AC、BD交于點O,以O(shè)A為x軸正方向,以O(shè)B為y軸正方向,OP為z軸正方向建立空間直角坐標(biāo)系.因為PA=AB=,則A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1).由=,得N,由=,得M,所以,=(-1,-1,0).因為=0,所以MN⊥AD(2)解:因為M在PA上,可設(shè)=λ,得M(λ,0,1-λ).所以=(λ,-1,1-λ),=(0,-2,0).設(shè)平面MBD的法向量=(x,y,z),由,得其中一組解為x=λ-1,y=0,z=λ,所以可取=(λ-1,0,λ).因為平面ABD的法向量為=(0,0,1),所以cos=,即=,解得λ=,從而M,N,所以MN==.考點:用空間向量法證垂直、求二面角.19、(Ⅰ);(Ⅱ)【解析】試題分析:(1)先由公式求出數(shù)列的通項公式;進而列方程組求數(shù)列的首項與公差,得數(shù)列的通項公式;(2)由(1)可得,再利用“錯位相減法”求數(shù)列的前項和.試題解析:(1)由題意知當(dāng)時,,當(dāng)時,,所以.設(shè)數(shù)列的公差為,由,即,可解得,所以.(2)由(1)知,又,得,,兩式作差,得所以.考點1、待定系數(shù)法求等差數(shù)列的通項公式;2、利用“錯位相減法”求數(shù)列的前項和.【易錯點晴】本題主要考查待定系數(shù)法求等差數(shù)列的通項公式、利用“錯位相減法”求數(shù)列的前項和,屬于難題.“錯位相減法”求數(shù)列的前項和是重點也是難點,利用“錯位相減法”求數(shù)列的和應(yīng)注意以下幾點:①掌握運用“錯位相減法”求數(shù)列的和的條件(一個等差數(shù)列與一個等比數(shù)列的積);②相減時注意最后一項的符號;③求和時注意項數(shù)別出錯;④最后結(jié)果一定不能忘記等式兩邊同時除以.20、(1),;(2).【解析】

(1)設(shè)點極坐標(biāo)分別為,,由可得,整理即可得到極坐標(biāo)方程,進而求得直角坐標(biāo)方程;(2)設(shè)點對應(yīng)的參數(shù)分別為,則,,將直線的參數(shù)方程代入的直角坐標(biāo)方程中,再利用韋達定理可得,,則,求得取最小值時符合的條件,進而求得直線的普通方程.【詳解】(1)設(shè)點極坐標(biāo)分別為,,因為,則,所以曲線的極坐標(biāo)方程為,兩邊同乘,得,所以的直角坐標(biāo)方程為,即.(2)設(shè)點對應(yīng)的參數(shù)分別為,則,,將直線的參數(shù)方程(參數(shù)),代入的直角坐標(biāo)方程中,整理得.由韋達定理得,,所以,當(dāng)且僅當(dāng)時,等號成立,則,所以當(dāng)取得最小值時,直線的普通方程為.【點睛】本題考查極坐標(biāo)與直角坐標(biāo)方程的轉(zhuǎn)化,考查利用直線的參數(shù)方程研究直線與圓的位置關(guān)系.21、(1);(2)【解析】

(1)由已知條件和正弦定理進行邊角互化得,再根據(jù)余弦定理可求得值.(2)由正弦定理得,,代入得,運用三角形的面積公式可求得其值.【詳解】(1)由及正弦定理得,即由余弦定理得,,.(2)設(shè)外接圓的半徑為,則由正弦定理得,,,.【點睛】本題考查運用三角形的正弦定理、余弦定理、三角形的面積公式,關(guān)鍵在于熟練地運用其公式,合理地選擇進行邊角互化,屬于基礎(chǔ)題.22、(1)當(dāng)時,公路的長度最短為千米;(2)(千米).【解析】

(1)設(shè)切點的坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義求出切線的方程為,根據(jù)兩點間距離得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,從而得出極值和最值,即可得出結(jié)果;(2)在中,由余弦定理得出,利用正

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論