山東省鄒平市一中學(xué)校2022-2023學(xué)年數(shù)學(xué)高三第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第1頁(yè)
山東省鄒平市一中學(xué)校2022-2023學(xué)年數(shù)學(xué)高三第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第2頁(yè)
山東省鄒平市一中學(xué)校2022-2023學(xué)年數(shù)學(xué)高三第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第3頁(yè)
山東省鄒平市一中學(xué)校2022-2023學(xué)年數(shù)學(xué)高三第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第4頁(yè)
山東省鄒平市一中學(xué)校2022-2023學(xué)年數(shù)學(xué)高三第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),方程有四個(gè)不同的根,記最大的根的所有取值為集合,則“函數(shù)有兩個(gè)零點(diǎn)”是“”的().A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知集合,則元素個(gè)數(shù)為()A.1 B.2 C.3 D.43.若函數(shù)(其中,圖象的一個(gè)對(duì)稱中心為,,其相鄰一條對(duì)稱軸方程為,該對(duì)稱軸處所對(duì)應(yīng)的函數(shù)值為,為了得到的圖象,則只要將的圖象()A.向右平移個(gè)單位長(zhǎng)度 B.向左平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度4.圓錐底面半徑為,高為,是一條母線,點(diǎn)是底面圓周上一點(diǎn),則點(diǎn)到所在直線的距離的最大值是()A. B. C. D.5.若復(fù)數(shù)滿足(為虛數(shù)單位),則其共軛復(fù)數(shù)的虛部為()A. B. C. D.6.等比數(shù)列的前項(xiàng)和為,若,,,,則()A. B. C. D.7.已知奇函數(shù)是上的減函數(shù),若滿足不等式組,則的最小值為()A.-4 B.-2 C.0 D.48.若,,則的值為()A. B. C. D.9.在中,D為的中點(diǎn),E為上靠近點(diǎn)B的三等分點(diǎn),且,相交于點(diǎn)P,則()A. B.C. D.10.己知函數(shù)若函數(shù)的圖象上關(guān)于原點(diǎn)對(duì)稱的點(diǎn)有2對(duì),則實(shí)數(shù)的取值范圍是()A. B. C. D.11.復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知正方體的體積為,點(diǎn),分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量=(1,2),=(-3,1),則=______.14.如圖是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形,設(shè),,則的面積為_(kāi)_______.15.在等差數(shù)列()中,若,,則的值是______.16.已知函數(shù)在定義域R上的導(dǎo)函數(shù)為,若函數(shù)沒(méi)有零點(diǎn),且,當(dāng)在上與在R上的單調(diào)性相同時(shí),則實(shí)數(shù)k的取值范圍是______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的離心率為是橢圓的一個(gè)焦點(diǎn),點(diǎn),直線的斜率為1.(1)求橢圓的方程;(1)若過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),線段的中點(diǎn)為,是否存在直線使得?若存在,求出的方程;若不存在,請(qǐng)說(shuō)明理由.18.(12分)設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,為拋物線過(guò)焦點(diǎn)的弦,已知以為直徑的圓與相切于點(diǎn).(1)求的值及圓的方程;(2)設(shè)為上任意一點(diǎn),過(guò)點(diǎn)作的切線,切點(diǎn)為,證明:.19.(12分)如圖,三棱柱中,平面,,,分別為,的中點(diǎn).(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.20.(12分)在直角坐標(biāo)系中,曲線的標(biāo)準(zhǔn)方程為.以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求直線的直角坐標(biāo)方程;(2)若點(diǎn)在曲線上,點(diǎn)在直線上,求的最小值.21.(12分)已知圓O經(jīng)過(guò)橢圓C:的兩個(gè)焦點(diǎn)以及兩個(gè)頂點(diǎn),且點(diǎn)在橢圓C上.求橢圓C的方程;若直線l與圓O相切,與橢圓C交于M、N兩點(diǎn),且,求直線l的傾斜角.22.(10分)已知直線的參數(shù)方程:(為參數(shù))和圓的極坐標(biāo)方程:(1)將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)已知點(diǎn),直線與圓相交于、兩點(diǎn),求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

作出函數(shù)的圖象,得到,把函數(shù)有零點(diǎn)轉(zhuǎn)化為與在(2,4]上有交點(diǎn),利用導(dǎo)數(shù)求出切線斜率,即可求得的取值范圍,再根據(jù)充分、必要條件的定義即可判斷.【詳解】作出函數(shù)的圖象如圖,由圖可知,,函數(shù)有2個(gè)零點(diǎn),即有兩個(gè)不同的根,也就是與在上有2個(gè)交點(diǎn),則的最小值為;設(shè)過(guò)原點(diǎn)的直線與的切點(diǎn)為,斜率為,則切線方程為,把代入,可得,即,∴切線斜率為,∴k的取值范圍是,∴函數(shù)有兩個(gè)零點(diǎn)”是“”的充分不必要條件,故選A.【點(diǎn)睛】本題主要考查了函數(shù)零點(diǎn)的判定,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,訓(xùn)練了利用導(dǎo)數(shù)研究過(guò)曲線上某點(diǎn)處的切線方程,試題有一定的綜合性,屬于中檔題.2、B【解析】

作出兩集合所表示的點(diǎn)的圖象,可得選項(xiàng).【詳解】由題意得,集合A表示以原點(diǎn)為圓心,以2為半徑的圓,集合B表示函數(shù)的圖象上的點(diǎn),作出兩集合所表示的點(diǎn)的示意圖如下圖所示,得出兩個(gè)圖象有兩個(gè)交點(diǎn):點(diǎn)A和點(diǎn)B,所以兩個(gè)集合有兩個(gè)公共元素,所以元素個(gè)數(shù)為2,故選:B.【點(diǎn)睛】本題考查集合的交集運(yùn)算,關(guān)鍵在于作出集合所表示的點(diǎn)的圖象,再運(yùn)用數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.3、B【解析】

由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出,由五點(diǎn)法作圖求出的值,可得的解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式,得出結(jié)論.【詳解】根據(jù)已知函數(shù)其中,的圖象過(guò)點(diǎn),,可得,,解得:.再根據(jù)五點(diǎn)法作圖可得,可得:,可得函數(shù)解析式為:故把的圖象向左平移個(gè)單位長(zhǎng)度,可得的圖象,故選B.【點(diǎn)睛】本題主要考查由函數(shù)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出,由五點(diǎn)法作圖求出的值,函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式的應(yīng)用,屬于中檔題.4、C【解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉(zhuǎn)化求解的位置,推出結(jié)果即可.詳解:圓錐底面半徑為,高為2,是一條母線,點(diǎn)是底面圓周上一點(diǎn),在底面的射影為;,,過(guò)的軸截面如圖:,過(guò)作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點(diǎn)睛:本題考查空間點(diǎn)線面距離的求法,考查空間想象能力以及計(jì)算能力,解題的關(guān)鍵是作出軸截面圖形,屬中檔題.5、D【解析】

由已知等式求出z,再由共軛復(fù)數(shù)的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復(fù)數(shù)=-1+,虛部為1故選D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算和共軛復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.6、D【解析】試題分析:由于在等比數(shù)列中,由可得:,又因?yàn)?,所以有:是方程的二?shí)根,又,,所以,故解得:,從而公比;那么,故選D.考點(diǎn):等比數(shù)列.7、B【解析】

根據(jù)函數(shù)的奇偶性和單調(diào)性得到可行域,畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【詳解】奇函數(shù)是上的減函數(shù),則,且,畫(huà)出可行域和目標(biāo)函數(shù),,即,表示直線與軸截距的相反數(shù),根據(jù)平移得到:當(dāng)直線過(guò)點(diǎn),即時(shí),有最小值為.故選:.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性和奇偶性,線性規(guī)劃問(wèn)題,意在考查學(xué)生的綜合應(yīng)用能力,畫(huà)出圖像是解題的關(guān)鍵.8、A【解析】

取,得到,取,則,計(jì)算得到答案.【詳解】取,得到;取,則.故.故選:.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,取和是解題的關(guān)鍵.9、B【解析】

設(shè),則,,由B,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因?yàn)锽,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,所以,,所以,.故選:B.【點(diǎn)睛】本題考查了平面向量基本定理和向量共線定理的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.10、B【解析】

考慮當(dāng)時(shí),有兩個(gè)不同的實(shí)數(shù)解,令,則有兩個(gè)不同的零點(diǎn),利用導(dǎo)數(shù)和零點(diǎn)存在定理可得實(shí)數(shù)的取值范圍.【詳解】因?yàn)榈膱D象上關(guān)于原點(diǎn)對(duì)稱的點(diǎn)有2對(duì),所以時(shí),有兩個(gè)不同的實(shí)數(shù)解.令,則在有兩個(gè)不同的零點(diǎn).又,當(dāng)時(shí),,故在上為增函數(shù),在上至多一個(gè)零點(diǎn),舍.當(dāng)時(shí),若,則,在上為增函數(shù);若,則,在上為減函數(shù);故,因?yàn)橛袃蓚€(gè)不同的零點(diǎn),所以,解得.又當(dāng)時(shí),且,故在上存在一個(gè)零點(diǎn).又,其中.令,則,當(dāng)時(shí),,故為減函數(shù),所以即.因?yàn)?,所以在上也存在一個(gè)零點(diǎn).綜上,當(dāng)時(shí),有兩個(gè)不同的零點(diǎn).故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),一般地,較為復(fù)雜的函數(shù)的零點(diǎn),必須先利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再結(jié)合零點(diǎn)存在定理說(shuō)明零點(diǎn)的存在性,本題屬于難題.11、B【解析】

利用復(fù)數(shù)的四則運(yùn)算以及幾何意義即可求解.【詳解】解:,則復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為:,位于第二象限.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算以及復(fù)數(shù)的幾何意義,屬于基礎(chǔ)題.12、D【解析】

由題意畫(huà)出圖形,將所在的面延它們的交線展開(kāi)到與所在的面共面,可得當(dāng)時(shí)最小,設(shè)正方體的棱長(zhǎng)為,得,進(jìn)一步求出四面體的體積即可.【詳解】解:如圖,

∵點(diǎn)M,N分別在棱上,要最小,將所在的面延它們的交線展開(kāi)到與所在的面共面,三線共線時(shí),最小,

設(shè)正方體的棱長(zhǎng)為,則,∴.

取,連接,則共面,在中,設(shè)到的距離為,

設(shè)到平面的距離為,

.

故選D.【點(diǎn)睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問(wèn)題,考查計(jì)算能力,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、-6【解析】

由可求,然后根據(jù)向量數(shù)量積的坐標(biāo)表示可求.【詳解】∵=(1,2),=(-3,1),∴=(-4,-1),則=1×(-4)+2×(-1)=-6故答案為-6【點(diǎn)睛】本題主要考查了向量數(shù)量積的坐標(biāo)表示,屬于基礎(chǔ)試題.14、【解析】

根據(jù)個(gè)全等的三角形,得到,設(shè),求得,利用余弦定理求得,再利用三角形的面積公式,求得三角形的面積.【詳解】由于三角形是由個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形,所以.在三角形中,.設(shè),則.由余弦定理得,解得.所以三角形邊長(zhǎng)為,面積為.故答案為:【點(diǎn)睛】本題考查了等邊三角形的面積計(jì)算公式、余弦定理、全等三角形的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.15、-15【解析】

是等差數(shù)列,則有,可得的值,再由可得,計(jì)算即得.【詳解】數(shù)列是等差數(shù)列,,又,,,故.故答案為:【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),也可以由已知條件求出和公差,再計(jì)算.16、【解析】

由題意可知:為上的單調(diào)函數(shù),則為定值,由指數(shù)函數(shù)的性質(zhì)可知為上的增函數(shù),則在,單調(diào)遞增,求導(dǎo),則恒成立,則,根據(jù)函數(shù)的正弦函數(shù)的性質(zhì)即可求得的取值范圍.【詳解】若方程無(wú)解,則或恒成立,所以為上的單調(diào)函數(shù),都有,則為定值,設(shè),則,易知為上的增函數(shù),,,又與的單調(diào)性相同,在上單調(diào)遞增,則當(dāng),,恒成立,當(dāng),時(shí),,,,,,此時(shí),故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,正弦函數(shù)的性質(zhì),輔助角公式,考查計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(1)不存在,理由見(jiàn)解析【解析】

(1)利用離心率和過(guò)點(diǎn),列出等式,即得解(1)設(shè)的方程為,與橢圓聯(lián)立,利用韋達(dá)定理表示中點(diǎn)N的坐標(biāo),用點(diǎn)坐標(biāo)表示,利用韋達(dá)關(guān)系代入,得到關(guān)于k的等式,即可得解.【詳解】(1)由題意,可得解得則,故橢圓的方程為.(1)當(dāng)直線的斜率不存在時(shí),,不符合題意.當(dāng)?shù)男甭蚀嬖跁r(shí),設(shè)的方程為,聯(lián)立得,設(shè),則,,,即.設(shè),則,,,則,即,整理得,此方程無(wú)解,故的方程不存在.綜上所述,不存在直線使得.【點(diǎn)睛】本題考查了直線和橢圓綜合,考查了弦長(zhǎng)和中點(diǎn)問(wèn)題,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.18、(1)2,;(2)證明見(jiàn)解析.【解析】

(1)由題意得的方程為,根據(jù)為拋物線過(guò)焦點(diǎn)的弦,以為直徑的圓與相切于點(diǎn)..利用拋物線和圓的對(duì)稱性,可得,圓心為,半徑為2.(2)設(shè),的方程為,代入的方程,得,根據(jù)直線與拋物線相切,令,得,代入,解得.將代入的方程,得,得到點(diǎn)N的坐標(biāo)為,然后求解.【詳解】(1)解:由題意得的方程為,所以,解得.又由拋物線和圓的對(duì)稱性可知,所求圓的圓心為,半徑為2.所以圓的方程為.(2)證明:易知直線的斜率存在且不為0,設(shè),的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點(diǎn)N的坐標(biāo)為,所以,,故.【點(diǎn)睛】本題主要考查拋物線的定義幾何性質(zhì)以及直線與拋物線的位置關(guān)系,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.19、(1)詳見(jiàn)解析;(2).【解析】

(1)連接,,則且為的中點(diǎn),又∵為的中點(diǎn),∴,又平面,平面,故平面.(2)由平面,得,.以為原點(diǎn),分別以,,所在直線為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,設(shè),則,,,,,.取平面的一個(gè)法向量為,由,得:,令,得同理可得平面的一個(gè)法向量為∵平面平面,∴解得,得,又,設(shè)直線與平面所成角為,則.所以,直線與平面所成角的正弦值是.20、(1)(2)【解析】

(1)直接利用極坐標(biāo)公式計(jì)算得到答案(2)設(shè),,根據(jù)三角函數(shù)的有界性得到答案.【詳解】(1)因?yàn)?,所以,因?yàn)樗灾本€的直角坐標(biāo)方程為.(2)由題意可設(shè),則點(diǎn)到直線的距離.因?yàn)?,所以,因?yàn)椋实淖钚≈禐?【點(diǎn)睛】本題考查了極坐標(biāo)方程,參數(shù)方程,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.21、(1);(2)或【解析】

(1)先由題意得出,可得出與的等量關(guān)系,然后將點(diǎn)的坐標(biāo)代入橢圓的方程,可求出與的值,從而得出橢圓的方程;(2)對(duì)直線的斜率是否存在進(jìn)行分類討論,當(dāng)直線的斜率不存在時(shí),可求出,然后進(jìn)行檢驗(yàn);當(dāng)直線的斜率存在時(shí),可設(shè)直線的方程為,設(shè)點(diǎn),先由直線與圓相切得出與之間的關(guān)系,再將直線的方程與橢

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論