2023學(xué)年黑龍江省哈爾濱市賓縣達(dá)標(biāo)名校中考數(shù)學(xué)押題卷含答案解析_第1頁(yè)
2023學(xué)年黑龍江省哈爾濱市賓縣達(dá)標(biāo)名校中考數(shù)學(xué)押題卷含答案解析_第2頁(yè)
2023學(xué)年黑龍江省哈爾濱市賓縣達(dá)標(biāo)名校中考數(shù)學(xué)押題卷含答案解析_第3頁(yè)
2023學(xué)年黑龍江省哈爾濱市賓縣達(dá)標(biāo)名校中考數(shù)學(xué)押題卷含答案解析_第4頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023學(xué)年黑龍江省哈爾濱市賓縣達(dá)標(biāo)名校中考數(shù)學(xué)押題卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、測(cè)試卷卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.∠BAC放在正方形網(wǎng)格紙的位置如圖,則tan∠BAC的值為()A. B. C. D.2.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-23.點(diǎn)P(4,﹣3)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)所在的象限是()A.第四象限 B.第三象限 C.第二象限 D.第一象限4.如圖,在平面直角坐標(biāo)系中,以O(shè)為圓心,適當(dāng)長(zhǎng)為半徑畫弧,交x軸于點(diǎn)M,交y軸于點(diǎn)N,再分別以點(diǎn)M、N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧在第二象限交于點(diǎn)P.若點(diǎn)P的坐標(biāo)為(2a,b+1),則a與b的數(shù)量關(guān)系為()A.a(chǎn)=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=15.如圖,在中,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使點(diǎn)落在線段上的點(diǎn)處,點(diǎn)落在點(diǎn)處,則兩點(diǎn)間的距離為()A. B. C. D.6.如圖,在平面直角坐標(biāo)系中,A(1,2),B(1,-1),C(2,2),拋物線y=ax2(a≠0)經(jīng)過(guò)△ABC區(qū)域(包括邊界),則a的取值范圍是()A.

B.

C.

或D.7.如圖是由5個(gè)相同的正方體搭成的幾何體,其左視圖是()A. B.C. D.8.如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點(diǎn),將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.9.過(guò)正方體中有公共頂點(diǎn)的三條棱的中點(diǎn)切出一個(gè)平面,形成如圖幾何體,其正確展開圖正確的為()A. B. C. D.10.已知a,b為兩個(gè)連續(xù)的整數(shù),且a<<b,則a+b的值為()A.7 B.8 C.9 D.10二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.兩地相距的路程為240千米,甲、乙兩車沿同一線路從地出發(fā)到地,分別以一定的速度勻速行駛,甲車先出發(fā)40分鐘后,乙車才出發(fā).途中乙車發(fā)生故障,修車耗時(shí)20分鐘,隨后,乙車車速比發(fā)生故障前減少了10千米/小時(shí)(仍保持勻速前行),甲、乙兩車同時(shí)到達(dá)地.甲、乙兩車相距的路程(千米)與甲車行駛時(shí)間(小時(shí))之間的關(guān)系如圖所示,求乙車修好時(shí),甲車距地還有____________千米.12.若關(guān)于的一元二次方程(m-1)x2-4x+1=0有兩個(gè)不相等的實(shí)數(shù)根,則m的取值范圍為_____________.13.已知實(shí)數(shù)a、b、c滿足+|10﹣2c|=0,則代數(shù)式ab+bc的值為__.14.如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,點(diǎn)M,N分別是邊BC,AB上的動(dòng)點(diǎn),沿MN所在的直線折疊∠B,使點(diǎn)B的對(duì)應(yīng)點(diǎn)B′始終落在邊AC上,若△MB′C為直角三角形,則BM的長(zhǎng)為_____.15.拋物線y=x2﹣2x+m與x軸只有一個(gè)交點(diǎn),則m的值為_____.16.若關(guān)于的一元二次方程無(wú)實(shí)數(shù)根,則一次函數(shù)的圖象不經(jīng)過(guò)第_________象限.三、解答題(共8題,共72分)17.(8分)如圖,AB是⊙O的直徑,點(diǎn)C是弧AB的中點(diǎn),點(diǎn)D是⊙O外一點(diǎn),AD=AB,AD交⊙O于F,BD交⊙O于E,連接CE交AB于G.(1)證明:∠C=∠D;(2)若∠BEF=140°,求∠C的度數(shù);(3)若EF=2,tanB=3,求CE?CG的值.18.(8分)“低碳生活,綠色出行”是我們倡導(dǎo)的一種生活方式,有關(guān)部門抽樣調(diào)查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計(jì)圖:(1)填空:樣本中的總?cè)藬?shù)為;開私家車的人數(shù)m=;扇形統(tǒng)計(jì)圖中“騎自行車”所在扇形的圓心角為度;(2)補(bǔ)全條形統(tǒng)計(jì)圖;(3)該單位共有2000人,積極踐行這種生活方式,越來(lái)越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問(wèn)原來(lái)開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?19.(8分)為加快城鄉(xiāng)對(duì)接,建設(shè)美麗鄉(xiāng)村,某地區(qū)對(duì)A、B兩地間的公路進(jìn)行改建,如圖,A,B兩地之間有一座山.汽車原來(lái)從A地到B地需途經(jīng)C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛,已知BC=80千米,∠A=45°,∠B=30°.開通隧道前,汽車從A地到B地要走多少千米?開通隧道后,汽車從A地到B地可以少走多少千米?(結(jié)果保留根號(hào))20.(8分)如圖,點(diǎn)E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF與DE交于點(diǎn)G,求證:GE=GF.21.(8分)計(jì)算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|22.(10分)如圖1,一枚質(zhì)地均勻的正六面體骰子的六個(gè)面分別標(biāo)有數(shù)字1,2,3,4,5,6,如圖2,正方形ABCD的頂點(diǎn)處各有一個(gè)圈,跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子朝上的那面上的數(shù)字是幾,就沿正方形的邊按順時(shí)針?lè)较蜻B續(xù)跳幾個(gè)邊長(zhǎng)。如:若從圈A起跳,第一次擲得3,就順時(shí)針連續(xù)跳3個(gè)邊長(zhǎng),落在圈D;若第二次擲得2,就從圈D開始順時(shí)針連續(xù)跳2個(gè)邊長(zhǎng),落得圈B;…設(shè)游戲者從圈A起跳.小賢隨機(jī)擲一次骰子,求落回到圈A的概率P1.小南隨機(jī)擲兩次骰子,用列表法求最后落回到圈A的概率P2,并指出他與小賢落回到圈A的可能性一樣嗎?23.(12分)(問(wèn)題發(fā)現(xiàn))(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關(guān)系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點(diǎn)M,N.試猜想四邊形FMAN的形狀,并說(shuō)明理由;(解決問(wèn)題)(3)如圖(3)在正方形ABCD中,AB=2,以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60°,得到正方形AB'C'D',請(qǐng)直接寫出BD'平方的值.24.如圖,若要在寬AD為20米的城南大道兩邊安裝路燈,路燈的燈臂BC長(zhǎng)2米,且與燈柱AB成120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當(dāng)燈罩的軸線CO通過(guò)公路路面的中心線時(shí)照明效果最好.此時(shí),路燈的燈柱AB的高應(yīng)該設(shè)計(jì)為多少米.(結(jié)果保留根號(hào))

2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題(共10小題,每小題3分,共30分)1、D【答案解析】

連接CD,再利用勾股定理分別計(jì)算出AD、AC、BD的長(zhǎng),然后再根據(jù)勾股定理逆定理證明∠ADC=90°,再利用三角函數(shù)定義可得答案.【題目詳解】連接CD,如圖:,CD=,AC=∵,∴∠ADC=90°,∴tan∠BAC==.故選D.【答案點(diǎn)睛】本題主要考查了勾股定理,勾股定理逆定理,以及銳角三角函數(shù)定義,關(guān)鍵是證明∠ADC=90°.2、A【答案解析】測(cè)試卷分析:原方程變形為:x(x-1)=0x1=0,x1=1.故選A.考點(diǎn):解一元二次方程-因式分解法.3、C【答案解析】

由題意得點(diǎn)P的坐標(biāo)為(﹣4,3),根據(jù)象限內(nèi)點(diǎn)的符號(hào)特點(diǎn)可得點(diǎn)P1的所在象限.【題目詳解】∵設(shè)P(4,﹣3)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)是點(diǎn)P1,∴點(diǎn)P1的坐標(biāo)為(﹣4,3),∴點(diǎn)P1在第二象限.故選C【答案點(diǎn)睛】本題主要考查了兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,這兩點(diǎn)的橫縱坐標(biāo)均互為相反數(shù);符號(hào)為(﹣,+)的點(diǎn)在第二象限.4、B【答案解析】測(cè)試卷分析:根據(jù)作圖方法可得點(diǎn)P在第二象限角平分線上,則P點(diǎn)橫縱坐標(biāo)的和為0,即2a+b+1=0,∴2a+b=﹣1.故選B.5、A【答案解析】

先利用勾股定理計(jì)算出AB,再在Rt△BDE中,求出BD即可;【題目詳解】解:∵∠C=90°,AC=4,BC=3,

∴AB=5,

∵△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使點(diǎn)C落在線段AB上的點(diǎn)E處,點(diǎn)B落在點(diǎn)D處,

∴AE=AC=4,DE=BC=3,

∴BE=AB-AE=5-4=1,

在Rt△DBE中,BD=,故選A.【答案點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.6、B【答案解析】測(cè)試卷解析:如圖所示:分兩種情況進(jìn)行討論:當(dāng)時(shí),拋物線經(jīng)過(guò)點(diǎn)時(shí),拋物線的開口最小,取得最大值拋物線經(jīng)過(guò)△ABC區(qū)域(包括邊界),的取值范圍是:當(dāng)時(shí),拋物線經(jīng)過(guò)點(diǎn)時(shí),拋物線的開口最小,取得最小值拋物線經(jīng)過(guò)△ABC區(qū)域(包括邊界),的取值范圍是:故選B.點(diǎn)睛:二次函數(shù)二次項(xiàng)系數(shù)決定了拋物線開口的方向和開口的大小,開口向上,開口向下.的絕對(duì)值越大,開口越小.7、A【答案解析】

根據(jù)三視圖的定義即可判斷.【題目詳解】根據(jù)立體圖可知該左視圖是底層有2個(gè)小正方形,第二層左邊有1個(gè)小正方形.故選A.【答案點(diǎn)睛】本題考查三視圖,解題的關(guān)鍵是根據(jù)立體圖的形狀作出三視圖,本題屬于基礎(chǔ)題型.8、B【答案解析】

先根據(jù)翻折變換的性質(zhì)得到△DEF≌△AEF,再根據(jù)等腰三角形的性質(zhì)及三角形外角的性質(zhì)可得到∠BED=CDF,設(shè)CD=1,CF=x,則CA=CB=2,再根據(jù)勾股定理即可求解.【題目詳解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,設(shè)CD=1,CF=x,則CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故選B.【答案點(diǎn)睛】本題考查的是圖形翻折變換的性質(zhì)、等腰直角三角形的性質(zhì)、勾股定理、三角形外角的性質(zhì),涉及面較廣,但難易適中.9、B【答案解析】測(cè)試卷解析:選項(xiàng)折疊后都不符合題意,只有選項(xiàng)折疊后兩個(gè)剪去三角形與另一個(gè)剪去的三角形交于一個(gè)頂點(diǎn),與正方體三個(gè)剪去三角形交于一個(gè)頂點(diǎn)符合.故選B.10、A【答案解析】∵9<11<16,∴,即,∵a,b為兩個(gè)連續(xù)的整數(shù),且,∴a=3,b=4,∴a+b=7,故選A.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、90【答案解析】【分析】觀察圖象可知甲車40分鐘行駛了30千米,由此可求出甲車速度,再根據(jù)甲車行駛小時(shí)時(shí)與乙車的距離為10千米可求得乙車的速度,從而可求得乙車出故障修好后的速度,再根據(jù)甲、乙兩車同時(shí)到達(dá)B地,設(shè)乙車出故障前走了t1小時(shí),修好后走了t2小時(shí),根據(jù)等量關(guān)系甲車用了小時(shí)行駛了全程,乙車行駛的路程為60t1+50t2=240,列方程組求出t2,再根據(jù)甲車的速度即可知乙車修好時(shí)甲車距B地的路程.【題目詳解】甲車先行40分鐘(),所行路程為30千米,因此甲車的速度為(千米/時(shí)),設(shè)乙車的初始速度為V乙,則有,解得:(千米/時(shí)),因此乙車故障后速度為:60-10=50(千米/時(shí)),設(shè)乙車出故障前走了t1小時(shí),修好后走了t2小時(shí),則有,解得:,45×2=90(千米),故答案為90.【點(diǎn)評(píng)】本題考查了一次函數(shù)的實(shí)際應(yīng)用,難度較大,求出速度后能從題中找到必要的等量關(guān)系列方程組進(jìn)行求解是關(guān)鍵.12、且【答案解析】測(cè)試卷解析:∵一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,∴m?1≠0且△=16?4(m?1)>0,解得m<5且m≠1,∴m的取值范圍為m<5且m≠1.故答案為:m<5且m≠1.點(diǎn)睛:一元二次方程方程有兩個(gè)不相等的實(shí)數(shù)根時(shí):13、-1【答案解析】測(cè)試卷分析:根據(jù)非負(fù)數(shù)的性質(zhì)可得:,解得:,則ab+bc=(-11)×6+6×5=-66+30=-1.14、或1【答案解析】

圖1,∠B’MC=90°,B’與點(diǎn)A重合,M是BC的中點(diǎn),所以BM=,圖2,當(dāng)∠MB’C=90°,∠A=90°,AB=AC,∠C=45°,所以Rt是等腰直角三角形,所以BM=+1,所以CM+BM=BM+BM=+1,所以BM=1.【題目詳解】請(qǐng)?jiān)诖溯斎朐斀猓?5、1【答案解析】

由拋物線y=x2-2x+m與x軸只有一個(gè)交點(diǎn)可知,對(duì)應(yīng)的一元二次方程x2-2x+m=2,根的判別式△=b2-4ac=2,由此即可得到關(guān)于m的方程,解方程即可求得m的值.【題目詳解】解:∵拋物線y=x2﹣2x+m與x軸只有一個(gè)交點(diǎn),∴△=2,∴b2﹣4ac=22﹣4×1×m=2;∴m=1.故答案為1.【答案點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn)問(wèn)題,注:①拋物線與x軸有兩個(gè)交點(diǎn),則△>2;②拋物線與x軸無(wú)交點(diǎn),則△<2;③拋物線與x軸有一個(gè)交點(diǎn),則△=2.16、一【答案解析】

根據(jù)一元二次方程的定義和判別式的意義得到m≠0且△=(-2)2-4m×(-1)<0,所以m<-1,然后根據(jù)一次函數(shù)的性質(zhì)判斷一次函數(shù)y=mx+m的圖象所在的象限即可.【題目詳解】∵關(guān)于x的一元二次方程mx2-2x-1=0無(wú)實(shí)數(shù)根,∴m≠0且△=(-2)2-4m×(-1)<0,∴m<-1,∴一次函數(shù)y=mx+m的圖象經(jīng)過(guò)第二、三、四象限,不經(jīng)過(guò)第一象限.故答案為一.【答案點(diǎn)睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0時(shí),方程無(wú)實(shí)數(shù)根.也考查了一次函數(shù)的性質(zhì).三、解答題(共8題,共72分)17、(1)見(jiàn)解析;(2)70°;(3)1.【答案解析】

(1)先根據(jù)等邊對(duì)等角得出∠B=∠D,即可得出結(jié)論;(2)先判斷出∠DFE=∠B,進(jìn)而得出∠D=∠DFE,即可求出∠D=70°,即可得出結(jié)論;(3)先求出BE=EF=2,進(jìn)而求AE=6,即可得出AB,進(jìn)而求出AC,再判斷出△ACG∽△ECA,即可得出結(jié)論.【題目詳解】(1)∵AB=AD,∴∠B=∠D,∵∠B=∠C,∴∠C=∠D;(2)∵四邊形ABEF是圓內(nèi)接四邊形,∴∠DFE=∠B,由(1)知,∠B=∠D,∴∠D=∠DFE,∵∠BEF=140°=∠D+∠DFE=2∠D,∴∠D=70°,由(1)知,∠C=∠D,∴∠C=70°;(3)如圖,由(2)知,∠D=∠DFE,∴EF=DE,連接AE,OC,∵AB是⊙O的直徑,∴∠AEB=90°,∴BE=DE,∴BE=EF=2,在Rt△ABE中,tanB==3,∴AE=3BE=6,根據(jù)勾股定理得,AB=,∴OA=OC=AB=,∵點(diǎn)C是的中點(diǎn),∴,∴∠AOC=90°,∴AC=OA=2,∵,∴∠CAG=∠CEA,∵∠ACG=∠ECA,∴△ACG∽△ECA,∴,∴CE?CG=AC2=1.【答案點(diǎn)睛】本題是幾何綜合題,涉及了圓的性質(zhì),圓周角定理,勾股定理,銳角三角函數(shù),相似三角形的判定和性質(zhì),圓內(nèi)接四邊形的性質(zhì),等腰三角形的性質(zhì)等,綜合性較強(qiáng),有一定的難度,熟練掌握和靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.本題中求出BE=2也是解題的關(guān)鍵.18、(1)80,20,72;(2)16,補(bǔ)圖見(jiàn)解析;(3)原來(lái)開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).【答案解析】測(cè)試卷分析:(1)用乘公交車的人數(shù)除以所占的百分比,計(jì)算即可求出總?cè)藬?shù),再用總?cè)藬?shù)乘以開私家車的所占的百分比求出m,用360°乘以騎自行車的所占的百分比計(jì)算即可得解:樣本中的總?cè)藬?shù)為:36÷45%=80人;開私家車的人數(shù)m=80×25%=20;扇形統(tǒng)計(jì)圖中“騎自行車”的圓心角為360°×(1-10%-25%-45%)=360°×20%=72°.(2)求出騎自行車的人數(shù),然后補(bǔ)全統(tǒng)計(jì)圖即可.(3)設(shè)原來(lái)開私家車的人中有x人改為騎自行車,表示出改后騎自行車的人數(shù)和開私家車的人數(shù),列式不等式,求解即可.測(cè)試卷解析:解:(1)80,20,72.(2)騎自行車的人數(shù)為:80×20%=16人,補(bǔ)全統(tǒng)計(jì)圖如圖所示;(3)設(shè)原來(lái)開私家車的人中有x人改為騎自行車,由題意得,1580答:原來(lái)開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).考點(diǎn):1.條形統(tǒng)計(jì)圖;2.扇形統(tǒng)計(jì)圖;3.頻數(shù)、頻率和總量的關(guān)系;4.一元一次不等式的應(yīng)用.19、(1)開通隧道前,汽車從A地到B地要走(80+40)千米;(2)汽車從A地到B地比原來(lái)少走的路程為[40+40(﹣)]千米.【答案解析】

(1)過(guò)點(diǎn)C作AB的垂線CD,垂足為D,在直角△ACD中,解直角三角形求出CD,進(jìn)而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,進(jìn)而求出汽車從A地到B地比原來(lái)少走多少路程.【題目詳解】(1)過(guò)點(diǎn)C作AB的垂線CD,垂足為D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC?sin30°=80×=40(千米),AC=(千米),AC+BC=80+(千米),答:開通隧道前,汽車從A地到B地要走(80+)千米;(2)∵cos30°=,BC=80(千米),∴BD=BC?cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+(千米),∴汽車從A地到B地比原來(lái)少走多少路程為:AC+BC﹣AB=80+﹣40﹣=40+40(千米).答:汽車從A地到B地比原來(lái)少走的路程為[40+40]千米.【答案點(diǎn)睛】本題考查了勾股定理的運(yùn)用以及解一般三角形,求三角形的邊或高的問(wèn)題一般可以轉(zhuǎn)化為解直角三角形的問(wèn)題,解決的方法就是作高線.20、證明見(jiàn)解析.【答案解析】【分析】求出BF=CE,根據(jù)SAS推出△ABF≌△DCE,得對(duì)應(yīng)角相等,由等腰三角形的判定可得結(jié)論.【題目詳解】∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中,∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【答案點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),等腰三角形的判定,熟練掌握三角形全等的判定方法是解題的關(guān)鍵.21、-4【答案解析】分析:第一項(xiàng)根據(jù)乘方的意義計(jì)算,第二項(xiàng)非零數(shù)的零次冪等于1,第三項(xiàng)根據(jù)特殊角銳角三角函數(shù)值計(jì)算,第四項(xiàng)根據(jù)絕對(duì)值的意義化簡(jiǎn).詳解:原式=-4+1-2×+-1=-4點(diǎn)睛:本題考查了實(shí)數(shù)的運(yùn)算,熟練掌握乘方的意義,零指數(shù)冪的意義,及特殊角銳角三角函數(shù),絕對(duì)值的意義是解答本題的關(guān)鍵.22、(1)落回到圈A的概率P1【答案解析】

(1)由共有6種等可能的結(jié)果,落回到圈A的只有1種情況,直接利用概率公式求解即可求得答案;

(2)首先根據(jù)題意列出表格,然后由表格求得所有等可能的結(jié)果與最后落回到圈A的情況,再利用概率公式求解即可求得答案.【題目詳解】(1)∵擲一次骰子有6種等可能的結(jié)果,只有擲的4時(shí),才會(huì)落回到圈A,∴落回到圈A的概率P1(2)列表得:1234561((((((2((((((3((((((4((((((5((((((6((((((∵共有36種等可能的結(jié)果,當(dāng)兩次擲得的數(shù)字之和為4的倍數(shù),即(1,3)(2,2)(2,6∴p2∵P1∴可能性不一樣【答案點(diǎn)睛】本題考查了用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.23、(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見(jiàn)解析;(3)16+8或16﹣8【答案解析】

(1)依據(jù)點(diǎn)A在線段BD的垂直平分線上,點(diǎn)C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據(jù)Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),可得AF=CF=BF,再根據(jù)等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,進(jìn)而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD逆時(shí)針旋轉(zhuǎn)60°,②以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD順時(shí)針旋轉(zhuǎn)60°,分別依據(jù)旋轉(zhuǎn)的性質(zhì)以及勾股定理,即可得到結(jié)論.【題目詳解】(1)∵AB=AD,CB=

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論