下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022中考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,在Rt△ABC中,∠ACB=90°,CD是AB邊上的中線,AC=8,BC=6,則∠ACD的正切值是()A. B. C. D.2.∠BAC放在正方形網(wǎng)格紙的位置如圖,則tan∠BAC的值為()A. B. C. D.3.如圖,數(shù)軸上有A,B,C,D四個(gè)點(diǎn),其中絕對(duì)值最小的數(shù)對(duì)應(yīng)的點(diǎn)是()A.點(diǎn)A B.點(diǎn)B C.點(diǎn)C D.點(diǎn)D4.不等式組的整數(shù)解有()A.0個(gè) B.5個(gè) C.6個(gè) D.無(wú)數(shù)個(gè)5.下列性質(zhì)中菱形不一定具有的性質(zhì)是()A.對(duì)角線互相平分 B.對(duì)角線互相垂直C.對(duì)角線相等 D.既是軸對(duì)稱圖形又是中心對(duì)稱圖形6.如圖1,點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),沿B→C→A勻速運(yùn)動(dòng)到點(diǎn)A,圖2是點(diǎn)P運(yùn)動(dòng)時(shí),線段BP的長(zhǎng)度y隨時(shí)間x變化的關(guān)系圖象,其中M為曲線部分的最低點(diǎn),則△ABC的面積是()A.10 B.12 C.20 D.247.方程組的解x、y滿足不等式2x﹣y>1,則a的取值范圍為()A.a(chǎn)≥ B.a(chǎn)> C.a(chǎn)≤ D.a(chǎn)>8.如圖,在⊙O中,AE是直徑,半徑OC垂直于弦AB于D,連接BE,若AB=2,CD=1,則BE的長(zhǎng)是A.5 B.6 C.7 D.89.下面的幾何體中,主(正)視圖為三角形的是()A. B. C. D.10.分式方程=1的解為()A.x=1 B.x=0 C.x=﹣ D.x=﹣111.如圖,在矩形ABCD中,AB=2,BC=1.若點(diǎn)E是邊CD的中點(diǎn),連接AE,過(guò)點(diǎn)B作BF⊥AE交AE于點(diǎn)F,則BF的長(zhǎng)為()A. B. C. D.12.小紅上學(xué)要經(jīng)過(guò)兩個(gè)十字路口,每個(gè)路口遇到紅、綠燈的機(jī)會(huì)都相同,小紅希望上學(xué)時(shí)經(jīng)過(guò)每個(gè)路口都是綠燈,但實(shí)際這樣的機(jī)會(huì)是()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是▲.14.有一組數(shù)據(jù):3,5,5,6,7,這組數(shù)據(jù)的眾數(shù)為_(kāi)____.15.關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個(gè)不相等的實(shí)根,則實(shí)數(shù)k的取值范圍是_____.16.如圖,在長(zhǎng)方形ABCD中,AF⊥BD,垂足為E,AF交BC于點(diǎn)F,連接DF.圖中有全等三角形_____對(duì),有面積相等但不全等的三角形_____對(duì).17.化簡(jiǎn):=__________.18.如圖,矩形OABC的兩邊落在坐標(biāo)軸上,反比例函數(shù)y=的圖象在第一象限的分支過(guò)AB的中點(diǎn)D交OB于點(diǎn)E,連接EC,若△OEC的面積為12,則k=_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖①,有兩個(gè)形狀完全相同的直角三角形ABC和EFG疊放在一起(點(diǎn)A與點(diǎn)E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點(diǎn).
如圖②,若整個(gè)△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時(shí),點(diǎn)P從△EFG的頂點(diǎn)G出發(fā),以1cm/s的速度在直角邊GF上向點(diǎn)F運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)F時(shí),點(diǎn)P停止運(yùn)動(dòng),△EFG也隨之停止平移.設(shè)運(yùn)動(dòng)時(shí)間為x(s),F(xiàn)G的延長(zhǎng)線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點(diǎn)P與G、F重合的情況).
(1)當(dāng)x為何值時(shí),OP∥AC;
(2)求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;
(3)是否存在某一時(shí)刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說(shuō)明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)20.(6分)如圖:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°求證:(1)△PAC∽△BPD;(2)若AC=3,BD=1,求CD的長(zhǎng).21.(6分)解不等式組請(qǐng)結(jié)合題意填空,完成本題的解答.(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式①和②的解集在數(shù)軸上表示出來(lái):(IV)原不等式組的解集為.22.(8分)如圖①,一次函數(shù)y=x﹣2的圖象交x軸于點(diǎn)A,交y軸于點(diǎn)B,二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)A、B兩點(diǎn),與x軸交于另一點(diǎn)C.(1)求二次函數(shù)的關(guān)系式及點(diǎn)C的坐標(biāo);(2)如圖②,若點(diǎn)P是直線AB上方的拋物線上一點(diǎn),過(guò)點(diǎn)P作PD∥x軸交AB于點(diǎn)D,PE∥y軸交AB于點(diǎn)E,求PD+PE的最大值;(3)如圖③,若點(diǎn)M在拋物線的對(duì)稱軸上,且∠AMB=∠ACB,求出所有滿足條件的點(diǎn)M的坐標(biāo).23.(8分)某手機(jī)店銷售部型和部型手機(jī)的利潤(rùn)為元,銷售部型和部型手機(jī)的利潤(rùn)為元.(1)求每部型手機(jī)和型手機(jī)的銷售利潤(rùn);(2)該手機(jī)店計(jì)劃一次購(gòu)進(jìn),兩種型號(hào)的手機(jī)共部,其中型手機(jī)的進(jìn)貨量不超過(guò)型手機(jī)的倍,設(shè)購(gòu)進(jìn)型手機(jī)部,這部手機(jī)的銷售總利潤(rùn)為元.①求關(guān)于的函數(shù)關(guān)系式;②該手機(jī)店購(gòu)進(jìn)型、型手機(jī)各多少部,才能使銷售總利潤(rùn)最大?(3)在(2)的條件下,該手機(jī)店實(shí)際進(jìn)貨時(shí),廠家對(duì)型手機(jī)出廠價(jià)下調(diào)元,且限定手機(jī)店最多購(gòu)進(jìn)型手機(jī)部,若手機(jī)店保持同種手機(jī)的售價(jià)不變,設(shè)計(jì)出使這部手機(jī)銷售總利潤(rùn)最大的進(jìn)貨方案.24.(10分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點(diǎn)D,連接AD,過(guò)D作AC的垂線,交AC邊于點(diǎn)E,交AB邊的延長(zhǎng)線于點(diǎn)F.(1)求證:EF是⊙O的切線;(2)若∠F=30°,BF=3,求弧AD的長(zhǎng).25.(10分)已知:如圖,AB為⊙O的直徑,C是BA延長(zhǎng)線上一點(diǎn),CP切⊙O于P,弦PD⊥AB于E,過(guò)點(diǎn)B作BQ⊥CP于Q,交⊙O于H,(1)如圖1,求證:PQ=PE;(2)如圖2,G是圓上一點(diǎn),∠GAB=30°,連接AG交PD于F,連接BF,若tan∠BFE=3,求∠C的度數(shù);(3)如圖3,在(2)的條件下,PD=6,連接QC交BC于點(diǎn)M,求QM的長(zhǎng).26.(12分)請(qǐng)你僅用無(wú)刻度的直尺在下面的圖中作出△ABC的邊AB上的高CD.如圖①,以等邊三角形ABC的邊AB為直徑的圓,與另兩邊BC、AC分別交于點(diǎn)E、F.如圖②,以鈍角三角形ABC的一短邊AB為直徑的圓,與最長(zhǎng)的邊AC相交于點(diǎn)E.27.(12分)如圖,已知A(a,4),B(﹣4,b)是一次函數(shù)與反比例函數(shù)圖象的兩個(gè)交點(diǎn).(1)若a=1,求反比例函數(shù)的解析式及b的值;(2)在(1)的條件下,根據(jù)圖象直接回答:當(dāng)x取何值時(shí),反比例函數(shù)大于一次函數(shù)的值?(3)若a﹣b=4,求一次函數(shù)的函數(shù)解析式.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】
根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得CD=AD,再根據(jù)等邊對(duì)等角的性質(zhì)可得∠A=∠ACD,然后根據(jù)正切函數(shù)的定義列式求出∠A的正切值,即為tan∠ACD的值.【詳解】∵CD是AB邊上的中線,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=,∴tan∠ACD的值.故選D.【點(diǎn)睛】本題考查了銳角三角函數(shù)的定義,直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),等邊對(duì)等角的性質(zhì),求出∠A=∠ACD是解本題的關(guān)鍵.2、D【解析】
連接CD,再利用勾股定理分別計(jì)算出AD、AC、BD的長(zhǎng),然后再根據(jù)勾股定理逆定理證明∠ADC=90°,再利用三角函數(shù)定義可得答案.【詳解】連接CD,如圖:,CD=,AC=∵,∴∠ADC=90°,∴tan∠BAC==.故選D.【點(diǎn)睛】本題主要考查了勾股定理,勾股定理逆定理,以及銳角三角函數(shù)定義,關(guān)鍵是證明∠ADC=90°.3、B【解析】試題分析:在數(shù)軸上,離原點(diǎn)越近則說(shuō)明這個(gè)點(diǎn)所表示的數(shù)的絕對(duì)值越小,根據(jù)數(shù)軸可知本題中點(diǎn)B所表示的數(shù)的絕對(duì)值最小.故選B.4、B【解析】
先解每一個(gè)不等式,求出不等式組的解集,再求整數(shù)解即可.【詳解】解不等式x+3>0,得x>﹣3,解不等式﹣x≥﹣2,得x≤2,∴不等式組的解集為﹣3<x≤2,∴整數(shù)解有:﹣2,﹣1,0,1,2共5個(gè),故選B.【點(diǎn)睛】本題主要考查了不等式組的解法,并會(huì)根據(jù)未知數(shù)的范圍確定它所滿足的特殊條件的值.一般方法是先解不等式組,再根據(jù)解集求出特殊值.5、C【解析】
根據(jù)菱形的性質(zhì):①菱形具有平行四邊形的一切性質(zhì);②菱形的四條邊都相等;③菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;④菱形是軸對(duì)稱圖形,它有2條對(duì)稱軸,分別是兩條對(duì)角線所在直線.【詳解】解:A、菱形的對(duì)角線互相平分,此選項(xiàng)正確;B、菱形的對(duì)角線互相垂直,此選項(xiàng)正確;C、菱形的對(duì)角線不一定相等,此選項(xiàng)錯(cuò)誤;D、菱形既是軸對(duì)稱圖形又是中心對(duì)稱圖形,此選項(xiàng)正確;故選C.考點(diǎn):菱形的性質(zhì)6、B【解析】
根據(jù)圖象可知點(diǎn)P在BC上運(yùn)動(dòng)時(shí),此時(shí)BP不斷增大,而從C向A運(yùn)動(dòng)時(shí),BP先變小后變大,從而可求出BC與AC的長(zhǎng)度.【詳解】解:根據(jù)圖象可知點(diǎn)P在BC上運(yùn)動(dòng)時(shí),此時(shí)BP不斷增大,
由圖象可知:點(diǎn)P從B向C運(yùn)動(dòng)時(shí),BP的最大值為5,即BC=5,
由于M是曲線部分的最低點(diǎn),
∴此時(shí)BP最小,即BP⊥AC,BP=4,
∴由勾股定理可知:PC=3,
由于圖象的曲線部分是軸對(duì)稱圖形,
∴PA=3,
∴AC=6,
∴△ABC的面積為:×4×6=12.故選:B.【點(diǎn)睛】本題考查動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象,解題關(guān)鍵是注意結(jié)合圖象求出BC與AC的長(zhǎng)度,本題屬于中等題型.7、B【解析】
方程組兩方程相加表示出2x﹣y,代入已知不等式即可求出a的范圍.【詳解】①+②得:解得:故選:B.【點(diǎn)睛】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數(shù)的值.8、B【解析】
根據(jù)垂徑定理求出AD,根據(jù)勾股定理列式求出半徑,根據(jù)三角形中位線定理計(jì)算即可.【詳解】解:∵半徑OC垂直于弦AB,∴AD=DB=AB=在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+()2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故選B【點(diǎn)睛】本題考查的是垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦是解題的關(guān)鍵9、C【解析】
解:圓柱的主視圖是矩形,正方體的主視圖是正方形,圓錐的主視圖是三角形,三棱柱的主視圖是寬相等兩個(gè)相連的矩形.故選C.10、C【解析】
首先找出分式的最簡(jiǎn)公分母,進(jìn)而去分母,再解分式方程即可.【詳解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-,檢驗(yàn):當(dāng)x=-時(shí),(x+1)2≠0,故x=-是原方程的根.故選C.【點(diǎn)睛】此題主要考查了解分式方程的解法,正確掌握解題方法是解題關(guān)鍵.11、B【解析】
根據(jù)S△ABE=S矩形ABCD=1=?AE?BF,先求出AE,再求出BF即可.【詳解】如圖,連接BE.∵四邊形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=1=?AE?BF,∴BF=.故選:B.【點(diǎn)睛】本題考查矩形的性質(zhì)、勾股定理、三角形的面積公式等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)用面積法解決有關(guān)線段問(wèn)題,屬于中考??碱}型.12、C【解析】
列舉出所有情況,看每個(gè)路口都是綠燈的情況數(shù)占總情況數(shù)的多少即可得.【詳解】畫樹(shù)狀圖如下,共4種情況,有1種情況每個(gè)路口都是綠燈,所以概率為.故選C.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、k<且k≠1.【解析】根據(jù)一元二次方程kx2-x+1=1有兩個(gè)不相等的實(shí)數(shù)根,知△=b2-4ac>1,然后據(jù)此列出關(guān)于k的方程,解方程,結(jié)合一元二次方程的定義即可求解:∵有兩個(gè)不相等的實(shí)數(shù)根,∴△=1-4k>1,且k≠1,解得,k<且k≠1.14、1【解析】
根據(jù)眾數(shù)的概念進(jìn)行求解即可得.【詳解】在數(shù)據(jù)3,1,1,6,7中1出現(xiàn)次數(shù)最多,所以這組數(shù)據(jù)的眾數(shù)為1,故答案為:1.【點(diǎn)睛】本題考查了眾數(shù)的概念,熟知一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù)是解題的關(guān)鍵.15、k>【解析】
由方程根的情況,根據(jù)根的判別式可得到關(guān)于k的不等式,則可求得k的取值范圍.【詳解】∵關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個(gè)不相等的實(shí)根,∴△>0,即(2k+1)2-4(k2+1)>0,解得k>,故答案為k>.【點(diǎn)睛】本題主要考查根的判別式,熟練掌握一元二次方程根的個(gè)數(shù)與根的判別式的關(guān)系是解題的關(guān)鍵.16、11【解析】
根據(jù)長(zhǎng)方形的對(duì)邊相等,每一個(gè)角都是直角可得AB=CD,AD=BC,∠BAD=∠C=90°,然后利用“邊角邊”證明Rt△ABD和Rt△CDB全等;根據(jù)等底等高的三角形面積相等解答.【詳解】有,Rt△ABD≌Rt△CDB,理由:在長(zhǎng)方形ABCD中,AB=CD,AD=BC,∠BAD=∠C=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(SAS);有,△BFD與△BFA,△ABD與△AFD,△ABE與△DFE,△AFD與△BCD面積相等,但不全等.故答案為:1;1.【點(diǎn)睛】本題考查了全等三角形的判定,長(zhǎng)方形的性質(zhì),以及等底等高的三角形的面積相等.17、a+b【解析】
將原式通分相減,然后用平方差公式分解因式,再約分化簡(jiǎn)即可?!驹斀狻拷猓涸?===a+b【點(diǎn)睛】此題主要考查了分式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.18、12.【解析】
設(shè)AD=a,則AB=OC=2a,根據(jù)點(diǎn)D在反比例函數(shù)y=的圖象上,可得D點(diǎn)的坐標(biāo)為(a,),所以O(shè)A=;過(guò)點(diǎn)E作EN⊥OC于點(diǎn)N,交AB于點(diǎn)M,則OA=MN=,已知△OEC的面積為12,OC=2a,根據(jù)三角形的面積公式求得EN=,即可求得EM=;設(shè)ON=x,則NC=BM=2a-x,證明△BME∽△ONE,根據(jù)相似三角形的性質(zhì)求得x=,即可得點(diǎn)E的坐標(biāo)為(,),根據(jù)點(diǎn)E在在反比例函數(shù)y=的圖象上,可得·=k,解方程求得k值即可.【詳解】設(shè)AD=a,則AB=OC=2a,∵點(diǎn)D在反比例函數(shù)y=的圖象上,∴D(a,),∴OA=,過(guò)點(diǎn)E作EN⊥OC于點(diǎn)N,交AB于點(diǎn)M,則OA=MN=,∵△OEC的面積為12,OC=2a,∴EN=,∴EM=MN-EN=-=;設(shè)ON=x,則NC=BM=2a-x,∵AB∥OC,∴△BME∽△ONE,∴,即,解得x=,∴E(,),∵點(diǎn)E在在反比例函數(shù)y=的圖象上,∴·=k,解得k=,∵k>0,∴k=12.故答案為:12.【點(diǎn)睛】本題是反比例函數(shù)與幾何的綜合題,求得點(diǎn)E的坐標(biāo)為(,)是解決問(wèn)題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)1.5s;(2)S=x2+x+3(0<x<3);(3)當(dāng)x=(s)時(shí),四邊形OAHP面積與△ABC面積的比為13:1.【解析】
(1)由于O是EF中點(diǎn),因此當(dāng)P為FG中點(diǎn)時(shí),OP∥EG∥AC,據(jù)此可求出x的值.(2)由于四邊形AHPO形狀不規(guī)則,可根據(jù)三角形AFH和三角形OPF的面積差來(lái)得出四邊形AHPO的面積.三角形AHF中,AH的長(zhǎng)可用AF的長(zhǎng)和∠FAH的余弦值求出,同理可求出FH的表達(dá)式(也可用相似三角形來(lái)得出AH、FH的長(zhǎng)).三角形OFP中,可過(guò)O作OD⊥FP于D,PF的長(zhǎng)易知,而OD的長(zhǎng),可根據(jù)OF的長(zhǎng)和∠FOD的余弦值得出.由此可求得y、x的函數(shù)關(guān)系式.(3)先求出三角形ABC和四邊形OAHP的面積,然后將其代入(2)的函數(shù)式中即可得出x的值.【詳解】解:(1)∵Rt△EFG∽R(shí)t△ABC∴,即,∴FG==3cm∵當(dāng)P為FG的中點(diǎn)時(shí),OP∥EG,EG∥AC∴OP∥AC∴x==×3=1.5(s)∴當(dāng)x為1.5s時(shí),OP∥AC.(2)在Rt△EFG中,由勾股定理得EF=5cm∵EG∥AH∴△EFG∽△AFH∴,∴AH=(x+5),F(xiàn)H=(x+5)過(guò)點(diǎn)O作OD⊥FP,垂足為D∵點(diǎn)O為EF中點(diǎn)∴OD=EG=2cm∵FP=3﹣x∴S四邊形OAHP=S△AFH﹣S△OFP=?AH?FH﹣?OD?FP=?(x+5)?(x+5)﹣×2×(3﹣x)=x2+x+3(0<x<3).(3)假設(shè)存在某一時(shí)刻x,使得四邊形OAHP面積與△ABC面積的比為13:1則S四邊形OAHP=×S△ABC∴x2+x+3=××6×8∴6x2+85x﹣250=0解得x1=,x2=﹣(舍去)∵0<x<3∴當(dāng)x=(s)時(shí),四邊形OAHP面積與△ABC面積的比為13:1.【點(diǎn)睛】本題是比較常規(guī)的動(dòng)態(tài)幾何壓軸題,第1小題運(yùn)用相似形的知識(shí)容易解決,第2小題同樣是用相似三角形建立起函數(shù)解析式,要說(shuō)的是本題中說(shuō)明了要寫出自變量x的取值范圍,而很多試題往往不寫,要記住自變量x的取值范圍是函數(shù)解析式不可分離的一部分,無(wú)論命題者是否交待了都必須寫,第3小題只要根據(jù)函數(shù)解析式列個(gè)方程就能解決.20、(1)見(jiàn)解析;(2)6.【解析】
(1)由△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,可得∠PAB=∠PBD,∠BPD=∠PAC,從而即可證明;
(2)根據(jù)相似三角形對(duì)應(yīng)邊成比例即可求出PC=PD=3,再由勾股定理即可求解.【詳解】證明:(1)∵△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,∴∠APC+∠BPD=45°,
又∠PAB+∠PBA=45°,∠PBA+∠PBD=45°,∴∠PAB=∠PBD,∠BPD=∠PAC,
∵∠PCA=∠PDB,∴△PAC∽△BPD;
(2)∵ACPD=PCBD,PC=PD,AC=3,BD=1
∴PC=PD=【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì)及等腰直角三角形,屬于基礎(chǔ)題,關(guān)鍵是掌握相似三角形的判定方法.21、(1)x≥;(1)x≤1;(3)答案見(jiàn)解析;(4)≤x≤1.【解析】
分別求出每一個(gè)不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無(wú)解了確定不等式組的解集.【詳解】解:(I)解不等式(1),得x≥;(II)解不等式(1),得x≤1;(III)把不等式①和②的解集在數(shù)軸上表示出來(lái):(IV)原不等式組的解集為:≤x≤1.故答案為x≥、x≤1、≤x≤1.【點(diǎn)睛】本題考查的是解一元一次不等式組,正確求出每一個(gè)不等式解集是基礎(chǔ),熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關(guān)鍵.22、(1)二次函數(shù)的關(guān)系式為y=;C(1,0);(2)當(dāng)m=2時(shí),PD+PE有最大值3;(3)點(diǎn)M的坐標(biāo)為(,)或(,).【解析】
(1)先求出A、B的坐標(biāo),然后把A、B的坐標(biāo)分別代入二次函數(shù)的解析式,解方程組即可得到結(jié)論;(2)先證明△PDE∽△OAB,得到PD=2PE.設(shè)P(m,),則E(m,),PD+PE=3PE,然后配方即可得到結(jié)論.(3)分兩種情況討論:①當(dāng)點(diǎn)M在在直線AB上方時(shí),則點(diǎn)M在△ABC的外接圓上,如圖1.求出圓心O1的坐標(biāo)和半徑,利用MO1=半徑即可得到結(jié)論.②當(dāng)點(diǎn)M在在直線AB下方時(shí),作O1關(guān)于AB的對(duì)稱點(diǎn)O2,如圖2.求出點(diǎn)O2的坐標(biāo),算出DM的長(zhǎng),即可得到結(jié)論.【詳解】解:(1)令y==0,得:x=4,∴A(4,0).令x=0,得:y=-2,∴B(0,-2).∵二次函數(shù)y=的圖像經(jīng)過(guò)A、B兩點(diǎn),∴,解得:,∴二次函數(shù)的關(guān)系式為y=.令y==0,解得:x=1或x=4,∴C(1,0).(2)∵PD∥x軸,PE∥y軸,∴∠PDE=∠OAB,∠PED=∠OBA,∴△PDE∽△OAB.∴===2,∴PD=2PE.設(shè)P(m,),則E(m,).∴PD+PE=3PE=3×[()-()]==.∵0<m<4,∴當(dāng)m=2時(shí),PD+PE有最大值3.(3)①當(dāng)點(diǎn)M在在直線AB上方時(shí),則點(diǎn)M在△ABC的外接圓上,如圖1.∵△ABC的外接圓O1的圓心在對(duì)稱軸上,設(shè)圓心O1的坐標(biāo)為(,-t).∴=,解得:t=2,∴圓心O1的坐標(biāo)為(,-2),∴半徑為.設(shè)M(,y).∵M(jìn)O1=,∴,解得:y=,∴點(diǎn)M的坐標(biāo)為().②當(dāng)點(diǎn)M在在直線AB下方時(shí),作O1關(guān)于AB的對(duì)稱點(diǎn)O2,如圖2.∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x軸,∴∠O1BA=∠OAB,∴∠O1AB=∠OAB,O2在x軸上,∴點(diǎn)O2的坐標(biāo)為(,0),∴O2D=1,∴DM==,∴點(diǎn)M的坐標(biāo)為(,).綜上所述:點(diǎn)M的坐標(biāo)為(,)或(,).點(diǎn)睛:本題是二次函數(shù)的綜合題.考查了求二次函數(shù)的解析式,求二次函數(shù)的最值,圓的有關(guān)性質(zhì).難度比較大,解答第(3)問(wèn)的關(guān)鍵是求出△ABC外接圓的圓心坐標(biāo).23、(1)每部型手機(jī)的銷售利潤(rùn)為元,每部型手機(jī)的銷售利潤(rùn)為元;(2)①;②手機(jī)店購(gòu)進(jìn)部型手機(jī)和部型手機(jī)的銷售利潤(rùn)最大;(3)手機(jī)店購(gòu)進(jìn)部型手機(jī)和部型手機(jī)的銷售利潤(rùn)最大.【解析】
(1)設(shè)每部型手機(jī)的銷售利潤(rùn)為元,每部型手機(jī)的銷售利潤(rùn)為元,根據(jù)題意列出方程組求解即可;(2)①根據(jù)總利潤(rùn)=銷售A型手機(jī)的利潤(rùn)+銷售B型手機(jī)的利潤(rùn)即可列出函數(shù)關(guān)系式;②根據(jù)題意,得,解得,根據(jù)一次函數(shù)的增減性可得當(dāng)當(dāng)時(shí),取最大值;(3)根據(jù)題意,,,然后分①當(dāng)時(shí),②當(dāng)時(shí),③當(dāng)時(shí),三種情況進(jìn)行討論求解即可.【詳解】解:(1)設(shè)每部型手機(jī)的銷售利潤(rùn)為元,每部型手機(jī)的銷售利潤(rùn)為元.根據(jù)題意,得,解得答:每部型手機(jī)的銷售利潤(rùn)為元,每部型手機(jī)的銷售利潤(rùn)為元.(2)①根據(jù)題意,得,即.②根據(jù)題意,得,解得.,,隨的增大而減小.為正整數(shù),當(dāng)時(shí),取最大值,.即手機(jī)店購(gòu)進(jìn)部型手機(jī)和部型手機(jī)的銷售利潤(rùn)最大.(3)根據(jù)題意,得.即,.①當(dāng)時(shí),隨的增大而減小,當(dāng)時(shí),取最大值,即手機(jī)店購(gòu)進(jìn)部型手機(jī)和部型手機(jī)的銷售利潤(rùn)最大;②當(dāng)時(shí),,,即手機(jī)店購(gòu)進(jìn)型手機(jī)的數(shù)量為滿足的整數(shù)時(shí),獲得利潤(rùn)相同;③當(dāng)時(shí),,隨的增大而增大,當(dāng)時(shí),取得最大值,即手機(jī)店購(gòu)進(jìn)部型手機(jī)和部型手機(jī)的銷售利潤(rùn)最大.【點(diǎn)睛】本題主要考查一次函數(shù)的應(yīng)用,二元一次方程組的應(yīng)用,解此題的關(guān)鍵在于熟練掌握一次函數(shù)的增減性.24、(1)見(jiàn)解析;(2)2π.【解析】
證明:(1)連接OD,∵AB是直徑,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD過(guò)O,∴EF是⊙O的切線.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴的長(zhǎng)度=.【點(diǎn)睛】本題考查了切線的判定和性質(zhì):圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.運(yùn)用切線的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.也考查了弧長(zhǎng)公式.25、(1)證明見(jiàn)解析(2)30°(3)QM=【解析】試題分析:(1)連接OP,PB,由已知易證∠OBP=∠OPB=∠QBP,從而可得BP平分∠OBQ,結(jié)合BQ⊥CP于點(diǎn)Q,PE⊥AB于點(diǎn)E即可由角平分線的性質(zhì)得到PQ=PE;(2)如下圖2,連接OP,則由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,設(shè)EF=x,則由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,從而可得AB=,則OP=OA=,結(jié)合AE=可得OE=,這樣即可得到sin∠OPE=,由此可得∠OPE=30°,則∠C=30°;(3)如下圖3,連接BG,過(guò)點(diǎn)O作OK⊥HB于點(diǎn)K,結(jié)合BQ⊥CP,∠OPQ=90°,可得四邊形POKQ為矩形.由此可得QK=PO,OK∥CQ從而可得∠KOB=∠C=30°;由已知易證PE=,在Rt△EPO中結(jié)合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知條件可得BG=6,∠ABG=60°;過(guò)點(diǎn)G作GN⊥QB交QB的延長(zhǎng)線于點(diǎn)N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,從而可得解得GN=,BN=3,由此可得QN=12,則在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分線,由此可得QM:GM=QB:GB=9:6由此即可求得QM的長(zhǎng)了.試題解析:(1)如下圖1,連接OP,PB,∵CP切⊙O于P,∴OP⊥CP于點(diǎn)P,又∵BQ⊥CP于點(diǎn)Q,∴OP∥BQ,∴∠OPB=∠QBP,∵OP=OB,∴∠OPB=∠OBP,∴∠QBP=∠OBP,又∵PE⊥AB于點(diǎn)E,∴PQ=PE;(2)如下圖2,連接,∵CP切⊙O于P,∴∴∵PD⊥AB∴∴∴在Rt中,∠GAB=30°∴設(shè)EF=x,則在Rt中,tan∠BFE=3∴∴∴∴∴在RtPEO中,∴30°;(3)如下圖3,連接BG,過(guò)點(diǎn)O作于K,又BQ⊥CP,∴,∴四邊形POKQ為矩形,∴QK=PO,OK//CQ,∴30°,∵⊙O中PD⊥AB于E,PD=6,AB為⊙O的直徑,∴PE=PD=3,根據(jù)(2)得,在RtEPO中,,∴,∴OB=QK=PO=6,∴在Rt中,,∴,∴QB=9,在△ABG中,AB為⊙O的直徑,∴AGB=90°,∵BAG=30°,∴BG=6,ABG=60°,過(guò)點(diǎn)G作GN⊥QB交QB的延長(zhǎng)線于點(diǎn)N,則∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,∴BN=BQ·cos∠GBQ=3,GN=BQ·s
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 1000平米房屋買賣合同轉(zhuǎn)讓協(xié)議版
- 個(gè)人房屋租賃合同書范例
- 二手房交易合同標(biāo)準(zhǔn)格式
- 個(gè)人借貸合同標(biāo)準(zhǔn)合同樣本
- 個(gè)人獨(dú)資企業(yè)股權(quán)轉(zhuǎn)讓正式合同
- 2025年從承包合同看合同法對(duì)建筑工程領(lǐng)域的影響與完善
- 土地買賣居間服務(wù)合同模板
- 中韓買賣合同
- 石膏銷售合同
- 個(gè)人設(shè)備抵押融資合同范本
- 《大學(xué)英語(yǔ)四級(jí)詞匯大全》
- 第六章-1八綱辨證
- 《工業(yè)機(jī)器人系統(tǒng)維護(hù)(ABB模塊)》試卷10套
- 危險(xiǎn)性化合物的微生物降解-中國(guó)石油大學(xué)環(huán)境生物工程
- 浙江省名校新2025屆高一數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析
- 學(xué)習(xí)2024《關(guān)于加強(qiáng)社會(huì)組織規(guī)范化建設(shè)推動(dòng)社會(huì)組織高質(zhì)量發(fā)展的意見(jiàn)》解讀課件
- 2024年縣全民健身活動(dòng)狀況調(diào)查活動(dòng)方案
- 足球場(chǎng)建設(shè)項(xiàng)目設(shè)計(jì)方案
- 湖北宜昌歷年中考語(yǔ)文現(xiàn)代文之記敘文閱讀16篇(含答案)(2003-2023)
- 問(wèn)題探究如何讓城市不再看海(教學(xué)課件)高一地理
- 2024年人教版五年級(jí)數(shù)學(xué)(上冊(cè))模擬考卷及答案(各版本)
評(píng)論
0/150
提交評(píng)論