版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AB⊥BD,CD⊥BD,垂足分別為B、D,AC和BD相交于點E,EF⊥BD垂足為F.則下列結(jié)論錯誤的是()A.AEEC=BEED B.AE2.已知⊙O的半徑為5,弦AB=6,P是AB上任意一點,點C是劣弧的中點,若△POC為直角三角形,則PB的長度()A.1 B.5 C.1或5 D.2或43.如圖,CD是⊙O的弦,O是圓心,把⊙O的劣弧沿著CD對折,A是對折后劣弧上的一點,∠CAD=100°,則∠B的度數(shù)是()A.100° B.80° C.60° D.50°4.如圖,該圖形經(jīng)過折疊可以圍成一個正方體,折好以后與“靜”字相對的字是()A.著 B.沉 C.應 D.冷5.如圖,先鋒村準備在坡角為的山坡上栽樹,要求相鄰兩樹之間的水平距離為米,那么這兩樹在坡面上的距離為()A. B. C.5cosα D.6.如圖1,點P從△ABC的頂點B出發(fā),沿B→C→A勻速運動到點A,圖2是點P運動時,線段BP的長度y隨時間x變化的關(guān)系圖象,其中M為曲線部分的最低點,則△ABC的面積是()A.10 B.12 C.20 D.247.如圖,將RtABC繞直角項點C順時針旋轉(zhuǎn)90°,得到A'B'C,連接AA',若∠1=20°,則∠B的度數(shù)是()A.70° B.65° C.60° D.55°8.統(tǒng)計學校排球隊員的年齡,發(fā)現(xiàn)有12、13、14、15等四種年齡,統(tǒng)計結(jié)果如下表:年齡(歲)12131415人數(shù)(個)2468根據(jù)表中信息可以判斷該排球隊員年齡的平均數(shù)、眾數(shù)、中位數(shù)分別為()A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、159.如圖,電線桿CD的高度為h,兩根拉線AC與BC互相垂直(A、D、B在同一條直線上),設∠CAB=α,那么拉線BC的長度為()A. B. C. D.10.計算的結(jié)果為()A.1 B.x C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.據(jù)國家旅游局數(shù)據(jù)中心綜合測算,2018年春節(jié)全國共接待游客3.86億人次,將“3.86億”用科學計數(shù)法表示,可記為____________.12.不等式組的解集是▲.13.如圖,在平面直角坐標系中有矩形ABCD,A(0,0),C(8,6),M為邊CD上一動點,當△ABM是等腰三角形時,M點的坐標為_____.14.如圖,將△AOB繞點按逆時針方向旋轉(zhuǎn)后得到,若,則的度數(shù)是_______.15.如圖,矩形ABCD的對角線BD經(jīng)過的坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數(shù)y=的圖象上,若點A的坐標為(﹣2,﹣3),則k的值為_____.16.如果等腰三角形的兩內(nèi)角度數(shù)相差45°,那么它的頂角度數(shù)為_____.三、解答題(共8題,共72分)17.(8分)某縣教育局為了豐富初中學生的大課間活動,要求各學校開展形式多樣的陽光體育活動.某中學就“學生體育活動興趣愛好”的問題,隨機調(diào)查了本校某班的學生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:(1)在這次調(diào)查中,喜歡籃球項目的同學有______人,在扇形統(tǒng)計圖中,“乒乓球”的百分比為______%,如果學校有800名學生,估計全校學生中有______人喜歡籃球項目.(2)請將條形統(tǒng)計圖補充完整.(3)在被調(diào)查的學生中,喜歡籃球的有2名女同學,其余為男同學.現(xiàn)要從中隨機抽取2名同學代表班級參加校籃球隊,請直接寫出所抽取的2名同學恰好是1名女同學和1名男同學的概率.18.(8分)6月14日是“世界獻血日”,某市采取自愿報名的方式組織市民義務獻血.獻血時要對獻血者的血型進行檢測,檢測結(jié)果有“A型”、“B型”、“AB型”、“O型”4種類型.在獻血者人群中,隨機抽取了部分獻血者的血型結(jié)果進行統(tǒng)計,并根據(jù)這個統(tǒng)計結(jié)果制作了兩幅不完整的圖表:血型ABABO人數(shù)105(1)這次隨機抽取的獻血者人數(shù)為人,m=;補全上表中的數(shù)據(jù);若這次活動中該市有3000人義務獻血,請你根據(jù)抽樣結(jié)果回答:從獻血者人群中任抽取一人,其血型是A型的概率是多少?并估計這3000人中大約有多少人是A型血?19.(8分)已知,拋物線的頂點為,它與軸交于點,(點在點左側(cè)).()求點、點的坐標;()將這個拋物線的圖象沿軸翻折,得到一個新拋物線,這個新拋物線與直線交于點.①求證:點是這個新拋物線與直線的唯一交點;②將新拋物線位于軸上方的部分記為,將圖象以每秒個單位的速度向右平移,同時也將直線以每秒個單位的速度向上平移,記運動時間為,請直接寫出圖象與直線有公共點時運動時間的范圍.20.(8分)如圖,在△ABC中,AD、AE分別為△ABC的中線和角平分線.過點C作CH⊥AE于點H,并延長交AB于點F,連接DH,求證:DH=BF.21.(8分)校園空地上有一面墻,長度為20m,用長為32m的籬笆和這面墻圍成一個矩形花圃,如圖所示.能圍成面積是126m2的矩形花圃嗎?若能,請舉例說明;若不能,請說明理由.若籬笆再增加4m,圍成的矩形花圃面積能達到170m2嗎?請說明理由.22.(10分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑作⊙O交AB于點D,取AC的中點E,邊結(jié)DE,OE、OD,求證:DE是⊙O的切線.23.(12分)如圖,在平面直角坐標系中,一次函數(shù)與反比例函數(shù)的圖像交于點和點,且經(jīng)過點.求反比例函數(shù)和一次函數(shù)的表達式;求當時自變量的取值范圍.24.如圖,在平面直角坐標系xOy中,每個小正方形的邊長都為1,和的頂點都在格點上,回答下列問題:可以看作是經(jīng)過若干次圖形的變化平移、軸對稱、旋轉(zhuǎn)得到的,寫出一種由得到的過程:______;畫出繞點B逆時針旋轉(zhuǎn)的圖形;在中,點C所形成的路徑的長度為______.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
利用平行線的性質(zhì)以及相似三角形的性質(zhì)一一判斷即可.【詳解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴AEED=AB∵EF∥AB,∴EFAB∴ADDB=AEBF,故選項故選:A.【點睛】考查平行線的性質(zhì),相似三角形的判定和性質(zhì),平行線分線段成比例定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.2、C【解析】
由點C是劣弧AB的中點,得到OC垂直平分AB,求得DA=DB=3,根據(jù)勾股定理得到OD==1,若△POC為直角三角形,只能是∠OPC=90°,則根據(jù)相似三角形的性質(zhì)得到PD=2,于是得到結(jié)論.【詳解】∵點C是劣弧AB的中點,∴OC垂直平分AB,∴DA=DB=3,∴OD=,若△POC為直角三角形,只能是∠OPC=90°,則△POD∽△CPD,∴,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根據(jù)對稱性得,當P在OC的左側(cè)時,PB=3+2=5,∴PB的長度為1或5.故選C.【點睛】考查了圓周角,弧,弦的關(guān)系,勾股定理,垂徑定理,正確左側(cè)圖形是解題的關(guān)鍵.3、B【解析】試題分析:如圖,翻折△ACD,點A落在A′處,可知∠A=∠A′=100°,然后由圓內(nèi)接四邊形可知∠A′+∠B=180°,解得∠B=80°.故選:B4、A【解析】
正方體的平面展開圖中,相對面的特點是中間必須間隔一個正方形,據(jù)此作答【詳解】這是一個正方體的平面展開圖,共有六個面,其中面“沉”與面“考”相對,面“著”與面“靜”相對,“冷”與面“應”相對.故選:A【點睛】本題主要考查了利用正方體及其表面展開圖的特點解題,明確正方體的展開圖的特征是解決此題的關(guān)鍵5、D【解析】
利用所給的角的余弦值求解即可.【詳解】∵BC=5米,∠CBA=∠α,∴AB==.故選D.【點睛】本題主要考查學生對坡度、坡角的理解及運用.6、B【解析】
根據(jù)圖象可知點P在BC上運動時,此時BP不斷增大,而從C向A運動時,BP先變小后變大,從而可求出BC與AC的長度.【詳解】解:根據(jù)圖象可知點P在BC上運動時,此時BP不斷增大,
由圖象可知:點P從B向C運動時,BP的最大值為5,即BC=5,
由于M是曲線部分的最低點,
∴此時BP最小,即BP⊥AC,BP=4,
∴由勾股定理可知:PC=3,
由于圖象的曲線部分是軸對稱圖形,
∴PA=3,
∴AC=6,
∴△ABC的面積為:×4×6=12.故選:B.【點睛】本題考查動點問題的函數(shù)圖象,解題關(guān)鍵是注意結(jié)合圖象求出BC與AC的長度,本題屬于中等題型.7、B【解析】
根據(jù)圖形旋轉(zhuǎn)的性質(zhì)得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,從而得∠AA′C=45°,結(jié)合∠1=20°,即可求解.【詳解】∵將RtABC繞直角項點C順時針旋轉(zhuǎn)90°,得到A'B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故選B.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì),等腰三角形和直角三角形的性質(zhì),掌握等腰三角形和直角三角形的性質(zhì)定理,是解題的關(guān)鍵.8、B【解析】
根據(jù)加權(quán)平均數(shù)、眾數(shù)、中位數(shù)的計算方法求解即可.【詳解】,15出現(xiàn)了8次,出現(xiàn)的次數(shù)最多,故眾數(shù)是15,從小到大排列后,排在10、11兩個位置的數(shù)是14,14,故中位數(shù)是14.故選B.【點睛】本題考查了平均數(shù)、眾數(shù)與中位數(shù)的意義.數(shù)據(jù)x1、x2、……、xn的加權(quán)平均數(shù):(其中w1、w2、……、wn分別為x1、x2、……、xn的權(quán)數(shù)).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).9、B【解析】根據(jù)垂直的定義和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=,可得BC=.故選B.點睛:本題主要考查解直角三角形的應用,熟練掌握同角的余角相等和三角函數(shù)的定義是解題的關(guān)鍵.10、A【解析】
根據(jù)同分母分式的加減運算法則計算可得.【詳解】原式===1,故選:A.【點睛】本題主要考查分式的加減法,解題的關(guān)鍵是掌握同分母分式的加減運算法則.二、填空題(本大題共6個小題,每小題3分,共18分)11、3.86×108【解析】根據(jù)科學記數(shù)法的表示(a×10n,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值≥1時,n是非負數(shù);當原數(shù)的絕對值<1時,n是負數(shù))形式可得:3.86億=386000000=3.86×108.故答案是:3.86×108.12、﹣1<x≤1【解析】解一元一次不等式組.【分析】解一元一次不等式組,先求出不等式組中每一個不等式的解集,再利用口訣求出這些解集的公共部分:同大取大,同小取小,大小小大中間找,大大小小解不了(無解).因此,解第一個不等式得,x>﹣1,解第二個不等式得,x≤1,∴不等式組的解集是﹣1<x≤1.13、(4,6),(8﹣27,6),(27,6).【解析】
分別取三個點作為定點,然后根據(jù)勾股定理和等腰三角形的兩個腰相等來判斷是否存在符合題意的M的坐標.【詳解】解:當M為頂點時,AB長為底=8,M在DC中點上,所以M的坐標為(4,6),當B為頂點時,AB長為腰=8,M在靠近D處,根據(jù)勾股定理可知ME=82-所以M的坐標為(8﹣27,6);當A為頂點時,AB長為腰=8,M在靠近C處,根據(jù)勾股定理可知MF=82-所以M的坐標為(27,6);綜上所述,M的坐標為(4,6),(8﹣27,6),(27,6);故答案為:(4,6),(8﹣27,6),(27,6).【點睛】本題主要考查矩形的性質(zhì)、坐標與圖形性質(zhì),解題關(guān)鍵是根據(jù)對等腰三角形性質(zhì)的掌握和勾股定理的應用.14、60°【解析】
根據(jù)題意可得,根據(jù)已知條件計算即可.【詳解】根據(jù)題意可得:,故答案為60°【點睛】本題主要考查旋轉(zhuǎn)角的有關(guān)計算,關(guān)鍵在于識別那個是旋轉(zhuǎn)角.15、1或﹣1【解析】
根據(jù)矩形的對角線將矩形分成面積相等的兩個直角三角形,找到圖中的所有矩形及相等的三角形,即可推出S四邊形CEOF=S四邊形HAGO,根據(jù)反比例函數(shù)比例系數(shù)的幾何意義即可求出k2+4k+1=6,再解出k的值即可.【詳解】如圖:∵四邊形ABCD、HBEO、OECF、GOFD為矩形,又∵BO為四邊形HBEO的對角線,OD為四邊形OGDF的對角線,∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,∴S△CBD﹣S△BEO﹣S△OFD=S△ADB﹣S△BHO﹣S△OGD,∴S四邊形CEOF=S四邊形HAGO=2×3=6,∴xy=k2+4k+1=6,解得k=1或k=﹣1.故答案為1或﹣1.【點睛】本題考查了反比例函數(shù)k的幾何意義、矩形的性質(zhì)、一元二次方程的解法,解題的關(guān)鍵是判斷出S四邊形CEOF=S四邊形HAGO.16、90°或30°.【解析】
分兩種情況討論求解:頂角比底角大45°;頂角比底角小45°.【詳解】設頂角為x度,則當?shù)捉菫閤°﹣45°時,2(x°﹣45°)+x°=180°,解得x=90°,當?shù)捉菫閤°+45°時,2(x°+45°)+x°=180°,解得x=30°,∴頂角度數(shù)為90°或30°.故答案為:90°或30°.【點睛】本題考查了等腰三角形的兩個底角相等即分類討論的數(shù)學思想,解答本題的關(guān)鍵是分頂角比底角大45°或頂角比底角小45°兩種情況進行計算.三、解答題(共8題,共72分)17、(1)5,20,80;(2)圖見解析;(3).【解析】【分析】(1)根據(jù)喜歡跳繩的人數(shù)以及所占的比例求得總?cè)藬?shù),然后用總?cè)藬?shù)減去喜歡跳繩、乒乓球、其它的人數(shù)即可得;(2)用乒乓球的人數(shù)除以總?cè)藬?shù)即可得;(3)用800乘以喜歡籃球人數(shù)所占的比例即可得;(4)根據(jù)(1)中求得的喜歡籃球的人數(shù)即可補全條形圖;(5)畫樹狀圖可得所有可能的情況,根據(jù)樹狀圖求得2名同學恰好是1名女同學和1名男同學的結(jié)果,根據(jù)概率公式進行計算即可.【詳解】(1)調(diào)查的總?cè)藬?shù)為20÷40%=50(人),喜歡籃球項目的同學的人數(shù)=50﹣20﹣10﹣15=5(人);(2)“乒乓球”的百分比==20%;(3)800×=80,所以估計全校學生中有80人喜歡籃球項目;(4)如圖所示,(5)畫樹狀圖為:共有20種等可能的結(jié)果數(shù),其中所抽取的2名同學恰好是1名女同學和1名男同學的結(jié)果數(shù)為12,所以所抽取的2名同學恰好是1名女同學和1名男同學的概率=.18、(1)50,20;(2)12,23;見圖;(3)大約有720人是A型血.【解析】【分析】(1)用AB型的人數(shù)除以它所占的百分比得到隨機抽取的獻血者的總?cè)藬?shù),然后用B型的人數(shù)除以抽取的總?cè)藬?shù)即可求得m的值;(2)先計算出O型的人數(shù),再計算出A型人數(shù),從而可補全上表中的數(shù)據(jù);(3)用樣本中A型的人數(shù)除以50得到血型是A型的概率,然后用3000乘以此概率可估計這3000人中是A型血的人數(shù).【詳解】(1)這次隨機抽取的獻血者人數(shù)為5÷10%=50(人),所以m=×100=20,故答案為50,20;(2)O型獻血的人數(shù)為46%×50=23(人),A型獻血的人數(shù)為50﹣10﹣5﹣23=12(人),補全表格中的數(shù)據(jù)如下:血型ABABO人數(shù)1210523故答案為12,23;(3)從獻血者人群中任抽取一人,其血型是A型的概率=,3000×=720,估計這3000人中大約有720人是A型血.【點睛】本題考查了扇形統(tǒng)計圖、統(tǒng)計表、概率公式、用樣本估計總體等,讀懂統(tǒng)計圖、統(tǒng)計表,從中找到必要的信息是解題的關(guān)鍵;隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)除以所有可能出現(xiàn)的結(jié)果數(shù).19、(1)B(-3,0),C(1,0);(2)①見解析;②≤t≤6.【解析】
(1)根據(jù)拋物線的頂點坐標列方程,即可求得拋物線的解析式,令y=0,即可得解;(2)①根據(jù)翻折的性質(zhì)寫出翻折后的拋物線的解析式,與直線方程聯(lián)立,求得交點坐標即可;②當t=0時,直線與拋物線只有一個交點N(3,-6)(相切),此時直線與G無交點;第一個交點出現(xiàn)時,直線過點C(1+t,0),代入直線解析式:y=-4x+6+t,解得t=;最后一個交點是B(-3+t,0),代入y=-4x+6+t,解得t=6,所以≤t≤6.【詳解】(1)因為拋物線的頂點為M(-1,-2),所以對稱軸為x=-1,可得:,解得:a=,c=,所以拋物線解析式為y=x2+x,令y=0,解得x=1或x=-3,所以B(-3,0),C(1,0);(2)①翻折后的解析式為y=-x2-x,與直線y=-4x+6聯(lián)立可得:x2-3x+=0,解得:x1=x2=3,所以該一元二次方程只有一個根,所以點N(3,-6)是唯一的交點;②≤t≤6.【點睛】本題主要考查了圖形運動,解本題的要點在于熟知一元二次方程的相關(guān)知識點.20、見解析.【解析】
先證明△AFC為等腰三角形,根據(jù)等腰三角形三線合一證明H為FC的中點,又D為BC的中點,根據(jù)中位線的性質(zhì)即可證明.【詳解】∵AE為△ABC的角平分線,CH⊥AE,∴△ACF是等腰三角形,∴AF=AC,HF=CH,∵AD為△ABC的中線,∴DH是△BCF的中位線,∴DH=BF.【點睛】本題考查三角形中位線定理,等腰三角形的判定與性質(zhì).解決本題的關(guān)鍵是證明H點為FC的中點,然后利用中位線的性質(zhì)解決問題.本題中要證明DH=BF,一般三角形中出現(xiàn)這種2倍或關(guān)系時,常用中位線的性質(zhì)解決.21、(1)長為18米、寬為7米或長為14米、寬為9米;(1)若籬笆再增加4m,圍成的矩形花圃面積不能達到172m1.【解析】
(1)假設能,設AB的長度為x米,則BC的長度為(31﹣1x)米,再根據(jù)矩形面積公式列方程求解即可得到答案.(1)假設能,設AB的長度為y米,則BC的長度為(36﹣1y)米,再根據(jù)矩形面積公式列方程,求得方程無解,即假設不成立.【詳解】(1)假設能,設AB的長度為x米,則BC的長度為(31﹣1x)米,根據(jù)題意得:x(31﹣1x)=116,解得:x1=7,x1=9,∴31﹣1x=18或31﹣1x=14,∴假設成立,即長為18米、寬為7米或長為14米、寬為9米.(1)假設能,設AB的長度為y米,則BC的長度為(36﹣1y)米,根據(jù)題意得:y(36﹣1y)=172,整理得:y1﹣18y+85=2.∵△=(﹣18)1﹣4×1×85=﹣16<2,∴該方程無解,∴假設不成立,即若籬笆再增加4m,圍成的矩形花圃面積不能達到172m1.22、詳見解析.【解析】試題分析:由三角形的中位線得出OE∥AB,進一步利用平行線的性質(zhì)和等腰三角形性質(zhì),找出△OCE和△ODE相等的線段和角,證得全等得出答案即可.試題解析:證明:∵點E為AC的中點,OC=OB,∴OE∥AB,∴∠EOC=∠B,∠EOD=∠ODB.又∵∠ODB=∠B,∴∠EOC=∠EOD.在△OCE和△ODE中,∵OC=OD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 河南警察學院《服裝工藝設計(二)》2023-2024學年第一學期期末試卷
- 2024年基克凝膠劑項目可行性研究報告
- 2024至2030年高溫防膨劑項目投資價值分析報告
- 2025至2031年中國固定瓷介電容器行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年靛藍竹節(jié)彈力牛仔布項目投資價值分析報告
- 2024至2030年鑄造石英砂項目投資價值分析報告
- 對外物業(yè)客服部培訓主題
- 2024至2030年中國電視機蓮花線數(shù)據(jù)監(jiān)測研究報告
- 2025年內(nèi)蒙古新大地建設集團招聘筆試參考題庫含答案解析
- 2025年中郵保險黑龍江分公司招聘筆試參考題庫含答案解析
- 《電化學儲能系統(tǒng)艙大件運輸特殊要求》
- 2025年采購部工作計劃
- 《防范于心反詐于行》中小學防范電信網(wǎng)絡詐騙知識宣傳課件
- 江蘇某小區(qū)園林施工組織設計方案
- 勘察工作質(zhì)量及保證措施
- 體外膜肺氧合(ECMO)并發(fā)癥及護理
- 墊江縣中醫(yī)院2018年11月份臨床技能中心教學設備招標項目招標文件
- 排放源統(tǒng)計(環(huán)統(tǒng))年報填報指南
- 反射療法師理論考試復習題及答案
- 房地產(chǎn)銷售主管崗位招聘筆試題及解答(某大型國企)2025年
- 心電圖并發(fā)癥預防及處理
評論
0/150
提交評論