




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
第第頁有關(guān)因式分解教案4篇
因式分解教案篇1
學(xué)習(xí)目標(biāo)
1、學(xué)會用公式法因式法分解
2、綜合運用提取公式法、公式法分解因式
學(xué)習(xí)重難點重點:
完全平方公式分解因式.
難點:綜合運用兩種公式法因式分解
自學(xué)過程設(shè)計
完全平方公式:
完全平方公式的逆運用:
做一做:
1.(1)16*2-8*+_______=(4*-1)2;
(2)_______+6*+9=(*+3)2;
(3)16*2+_______+9y2=(4*+3y)2;
(4)(a-b)2-2(a-b)+1=(______-1)2.
2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號)
3.以下因式分解正確的選項是()
A.*2+y2=(*+y)2B.*2-*y+*2=(*-y)2
C.1+4*-4*2=(1-2*)2D.4-4*+*2=(*-2)2
4.分解因式:(1)*2-22*+121(2)-y2-14y-49(3)(a+b)2+2(a+b)+1
5.計算:20222-40102022+20222=___________________.
6.假設(shè)*+y=1,那么*2+*y+y2的值是_________________.
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________________________________________________________預(yù)習(xí)展示一:
1.判別以下各式是不是完全平方式.
2、把以下各式因式分解:
(1)-*2+4*y-4y2
(2)3a*2+6a*y+3ay2
(3)(2*+y)2-6(2*+y)+9
應(yīng)用探究:
1、用簡便方法計算
49.92+9.98+0.12
拓展提高:
(1)(a2+b2)(a2+b210)+25=0求a2+b2
(2)4*2+y2-4*y-12*+6y+9=0
求*、y關(guān)系
(3)分解因式:m4+4
教后反思考察利用公式法因式分解的題目不會很難,但是需要同學(xué)記住公式的形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的,但是這里有用到實際中去的例子,對同學(xué)來說會難一些。
因式分解教案篇2
課型復(fù)習(xí)課教法講練結(jié)合
教學(xué)目標(biāo)(知識、技能、教育)
1.了解分解因式的意義,會用提公因式法、平方差公式和完全平方公式(徑直用公式不超過兩次)分解因式(指數(shù)是正整數(shù)).
2.通過乘法公式,的逆向變形,進一步進展同學(xué)觀測、歸納、類比、概括等技能,進展有條理的思索及語言表達技能
教學(xué)重點掌控用提取公因式法、公式法分解因式
教學(xué)難點依據(jù)題目的形式和特征恰當(dāng)選擇方法進行分解,以提高綜合解題技能。
教學(xué)媒體學(xué)案
教學(xué)過程
一:【課前預(yù)習(xí)】
(一):【知識梳理】
1.分解因式:把一個多項式化成的形式,這種變形叫做把這個多項式分解因式.
2.分解困式的方法:
⑴提公團式法:假如一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法.
⑵運用公式法:平方差公式:;
完全平方公式:;
3.分解因式的步驟:
(1)分解因式時,首先考慮是否有公因式,假如有公因式,肯定先提取公團式,然后再考慮是否能用公式法分解.
(2)在用公式時,假設(shè)是兩項,可考慮用平方差公式;假設(shè)是三項,可考慮用完全平方公式;假設(shè)是三項以上,可先進行適當(dāng)?shù)姆纸M,然后分解因式。
4.分解因式時常見的思維誤區(qū):
提公因式時,其公因式應(yīng)找字母指數(shù)最低的,而不是以首項為準(zhǔn).假設(shè)有一項被全部提出,括號內(nèi)的項1易漏掉.分解不徹底,如保留中括號形式,還能繼續(xù)分解等
(二):【課前練習(xí)】
1.以下各組多項式中沒有公因式的是()
A.3*-2與6*2-4*B.3(a-b)2與11(b-a)3
C.m*my與nyn*D.abac與abbc
2.以下各題中,分解因式錯誤的選項是()
3.列多項式能用平方差公式分解因式的是()
4.分解因式:*2+2*y+y2-4=_____
5.分解因式:(1);
(2);(3);
(4);(5)以上三題用了公式
二:【經(jīng)典考題剖析】
1.分解因式:
(1);(2);(3);(4)
分析:①因式分解時,無論有幾項,首先考慮提取公因式。提公因式時,不僅留意數(shù),也要留意字母,字母可能是單項式也可能是多項式,一次提盡。
②當(dāng)某項完全提出后,該項應(yīng)為1
③留意,
④分解結(jié)果(1)不帶中括號;(2)數(shù)字因數(shù)在前,字母因數(shù)在后;單項式在前,多項式在后;(3)相同因式寫成冪的形式;(4)分解結(jié)果應(yīng)在指定范圍內(nèi)不能再分解為止;假設(shè)無指定范圍,一般在有理數(shù)范圍內(nèi)分解。
2.分解因式:(1);(2);(3)
分析:對于二次三項齊次式,將其中一個字母看作末知數(shù),另一個字母視為常數(shù)。首先考慮提公因式后,由余下因式的項數(shù)為3項,可考慮完全平方式或十字相乘法繼續(xù)分解;假如項數(shù)為2,可考慮平方差、立方差、立方和公式。(3)題無公因式,項數(shù)為2項,可考慮平方差公式先分解開,再由項數(shù)考慮選擇方法繼續(xù)分解。
3.計算:(1)
(2)
分析:(1)此題先分解因式后約分,那么余下首尾兩數(shù)。
(2)分解后,便有規(guī)可循,再求1到20**的和。
4.分解因式:(1);(2)
分析:對于四項或四項以上的多項式的因式分解,一般采納分組分解法,
5.(1)在實數(shù)范圍內(nèi)分解因式:;
(2)已知、、是△ABC的三邊,且滿意,
求證:△ABC為等邊三角形。
分析:此題給出的是三邊之間的關(guān)系,而要證等邊三角形,那么須考慮證,
從已知給出的等式結(jié)構(gòu)看出,應(yīng)構(gòu)造出三個完全平方式,
即可得證,將原式兩邊同乘以2即可。略證:
即△ABC為等邊三角形。
三:【課后訓(xùn)練】
1.假設(shè)是一個完全平方式,那么的值是()
A.24B.12C.12D.24
2.把多項式因式分解的結(jié)果是()
A.B.C.D.
3.假如二次三項式可分解為,那么的值為()
A.-1B.1C.-2D.2
4.已知可以被在60~70之間的兩個整數(shù)整除,那么這兩個數(shù)是()
A.61、63B.61、65C.61、67D.63、65
5.計算:19982022=,=。
6.假設(shè),那么=。
7.、滿意,分解因式=。
8.因式分解:
(1);(2)
(3);(4)
9.觀測以下等式:
想一想,等式左邊各項冪的底數(shù)與右邊冪的底數(shù)有何關(guān)系?猜一猜可引出什么規(guī)律?用等式將其規(guī)律表示出來:。
10.已知是△ABC的三邊,且滿意,試判斷△ABC的外形。閱讀下面解題過程:
解:由得:
①
②
即③
△ABC為Rt△。④
試問:以上解題過程是否正確:;假設(shè)不正確,請指出錯在哪一步?(填);錯誤緣由是;此題結(jié)論應(yīng)為。
四:【課后小結(jié)】
布置作業(yè)地綱
因式分解教案篇3
教學(xué)目標(biāo):
1、進一步鞏固因式分解的概念;
2、鞏固因式分解常用的三種方法
3、選擇恰當(dāng)?shù)姆椒ㄟM行因式分解
4、應(yīng)用因式分解來解決一些實際問題
5、體驗應(yīng)用知識解決問題的樂趣
教學(xué)重點:
敏捷運用因式分解解決問題
教學(xué)難點:
敏捷運用恰當(dāng)?shù)囊蚴椒纸獾姆椒?,拓展練?xí)2、3
教學(xué)過程:
一、創(chuàng)設(shè)情景:假設(shè)a=101,b=99,求a2-b2的值
利用因式分解往往能將一些繁復(fù)的運算簡約化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
二、知識回顧
1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.
判斷以下各式哪些是因式分解?(讓同學(xué)先思索,老師提問講解,讓同學(xué)明確因式分解的概念以及與乘法的關(guān)系)
(1).*2-4y2=(*+2y)(*-2y)因式分解(2).2*(*-3y)=2*2-6*y整式乘法
(3).(5a-1)2=25a2-10a+1整式乘法(4).*2+4*+4=(*+2)2因式分解
(5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解
(7).2πR+2πr=2π(R+r)因式分解
2、.規(guī)律總結(jié)(老師講解):分解因式與整式乘法是互逆過程.
分解因式要留意以下幾點:(1).分解的對象需要是多項式.
(2).分解的結(jié)果肯定是幾個整式的乘積的形式.(3).要分解到不能分解為止.
3、因式分解的方法
提取公因式法:-6*2+6*y+3*=-3*(2*-2y-1)公因式的概念;公因式的求法
公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)2
4、強化訓(xùn)練
教學(xué)引入
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形?,F(xiàn)在請同學(xué)們拿出一個長方形紙條,按動畫所示進行折疊處理。
動畫演示:
場景一:正方形折疊演示
師:這就是我們得到的正方形。下面請同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來討論正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。
[同學(xué)活動:各自測量。]
鼓舞同學(xué)將測量結(jié)果與鄰近同學(xué)進行比較,找出共同點。
講授新課
找一兩個同學(xué)表述其結(jié)論,表述是要留意訂正其語言的規(guī)范性。
動畫演示:
場景二:正方形的性質(zhì)
師:這些性質(zhì)里那些是矩形的性質(zhì)?
[同學(xué)活動:查找矩形性質(zhì)。]
動畫演示:
場景三:矩形的性質(zhì)
師:同樣在這些性質(zhì)里查找屬于菱形的性質(zhì)。
[同學(xué)活動;查找菱形性質(zhì)。]
動畫演示:
場景四:菱形的性質(zhì)
師:這說明正方形具有矩形和菱形的全部性質(zhì)。
實時提出問題,引導(dǎo)同學(xué)進行思索。
師:依據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個精確的定義?
[同學(xué)活動:積極思索,有同學(xué)做躍躍欲試狀。]
師:請同學(xué)們回想矩形與菱形的定義,可以依據(jù)矩形與菱形的定義類似的給出正方形的定義。
同學(xué)應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓舞,把以下三種板書:
“有一組鄰邊相等的矩形叫做正方形。”
“有一個角是直角的菱形叫做正方形。”
“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”
[同學(xué)活動:爭論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采納的'是第三種定義方式。]
師:依據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
試一試把以下各式因式分解:
(1).1-*2=(1+*)(1-*)(2).4a2+4a+1=(2a+1)2
(3).4*2-8*=4*(*-2)(4).2*2y-6*y2=2*y(*-3y)
三、例題講解
例1、分解因式
(1)-*3y3+*2y+*y(2)6(*-2)+2*(2-*)
(3)(4)y2+y+
例2、分解因式
1、a3-ab2=2、(a-b)(*-y)-(b-a)(*+y)=3、(a+b)2+2(a+b)-15=
4、-1-2a-a2=5、*2-6*+9-y26、*2-4y2+*+2y=
例3、分解因式
1、72-2(13*-7)22、8a2b2-2a4b-8b3
三、知識應(yīng)用
1、(4*2-9y2)÷(2*+3y)2、(a2b-ab2)÷(b-a)
3、解方程:(1)*2=5*(2)(*-2)2=(2*+1)2
4、.假設(shè)*=-3,求20*2-60*的值.5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?
四、拓展應(yīng)用
1.計算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)
2、20222+20**被20**整除嗎?
3、假設(shè)n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).
五、課堂小結(jié):今日你對因式分解又有哪些新的認(rèn)識?
因式分解教案篇4
教學(xué)目標(biāo):
1.知識與技能:掌控運用提公因式法、公式法分解因式,培育同學(xué)應(yīng)用因式分解解決問題的技能.
2.過程與方法:經(jīng)受探究因式分解方法的過程,培育同學(xué)研討問題的方法,通過猜想、推理、驗證、歸納等步驟,得出因式分解的方法.
3.情感立場與價值觀:通過因式分解的學(xué)習(xí),使同學(xué)體會數(shù)學(xué)美,體會勝利的自信和團結(jié)合作精神,并體會整體數(shù)學(xué)思想和轉(zhuǎn)化的數(shù)學(xué)思想.
教學(xué)重、難點:用提公因式法和公式法分解因式.
教具預(yù)備:多媒體課件(小黑板)
教學(xué)方法:活動探究法
教學(xué)過程:
引入:在整式的變形中,有時需要將一個多項式寫成幾個整式的乘積的形式,這種變形就是因式分解.什么叫因式分解?
知識詳解
知識點1因式分解的定義
把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式因式分解,也叫做把這個多項式分解因式.
【說明】(1)因式分解與整式乘法是相反方向的變形.
例如:
(2)因式分解是恒等變形,因此可以用整式乘法來檢驗.
怎樣把一個多項式分解因式?
知識點2提公因式法
多項式ma+mb+mc中的各項都有一個公共的因式m,我們把因式m叫做這個多項式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成兩個因式乘積的形式,其中一個因式是各項的公因式m,另一個因式(a+b+c)是ma+mb+mc除以m所得的商,像這種分解因式的方法叫做提公因式法.例如:*2-*=*(*-1),8a2b-4ab+2a=2a(4ab-2b+1).
探究溝通
以下變形是否是因式分解?為什么?
(1)3*2y-*y+y=y(3*2-*);(2)*2-2*+3=(*-1)2+2;
(3)*2y2+2*y-1=(*y+1)(*y-1);(4)*n(*2-*+1)=*n+2-*n+1+*n.
典例剖析師生互動
例1用提公因式法將以下各式因式分解.
(1)-*3z+*4y;(2)3*(a-b)+2y(b-a);
分析:(1)題徑直提取公因式分解即可,(2)題首先要適當(dāng)?shù)淖冃?再把b-a化成-(a-b),然后再提取公因式.
小結(jié)運用提公因式法分解因式時,要留意以下問題:
(1)因式分解的結(jié)果每個括號內(nèi)如有同類項要合并,而且每個括號內(nèi)不能再分解.
(2)假如涌現(xiàn)像(2)小題需統(tǒng)一時,首先統(tǒng)一,盡可能使統(tǒng)一的個數(shù)少。這時留意到(a-b)n=(b-a)n(n為偶數(shù)).
(3)因式分解最末假如有同底數(shù)冪,要寫成冪的形式.
同學(xué)做一做把以下各式分解因式.
(1)(2a+b)(2a-3b)+(2a+5b)(2a+b);(2)4p(1-q)3+2(q-1)2
知識點3公式法
(1)平方差公式:a2-b2=(a+b)(a-b).即兩個數(shù)的平方差,等于這兩個數(shù)的和與這個數(shù)的差的積.例如:4*2-9=(2*)2-32=(2*+3)(2*-3).
(2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即兩個數(shù)的平方和加上(或減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或差)的平方.例如:4*2-12*y+9y2=(2*)2-2·2*·3y+(3y)2=(2*-3y)2.
探究溝通
以下變形是否正確?為什么?
(1)*2-3y2=(*+3y)(*-3y);(2)4*2-6*y+9y2=(2*-3y)2;(3)*2-2*-1=(*-1)2.
例2把以下各式分解因式.
(1)(a+b)2-4a2;(2)1-10*+25*2;(3)(m+n)2-6(m+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年秋六年級語文上冊單元作文范文集第一組選題二生活中的音響聆聽自然素材新人教版
- 四年級美術(shù)下冊1茶香四溢教案浙美版
- 《餐飲服務(wù)與管理綜合實訓(xùn)(第3版)》課件餐飲產(chǎn)品價格制定
- 陽光幼兒園“十五五”發(fā)展規(guī)劃(2025-2029年)
- 考點專練:26 電流的熱效應(yīng)(原卷版)
- 《經(jīng)濟法教程(第二版)》課件第七章 勞動法與勞動合同法律制度及實務(wù)
- 高中數(shù)學(xué)方法轉(zhuǎn)化與化歸思想
- 商場服務(wù)禮儀與文明接待
- 2025至2030年中國麻棉混紡染色面料行業(yè)投資前景及策略咨詢報告
- 2025至2030年中國高級潤膚洗手乳液行業(yè)投資前景及策略咨詢報告
- 樓梯 欄桿 欄板(一)22J403-1
- T∕CAEPI 31-2021 旋轉(zhuǎn)式沸石吸附濃縮裝置技術(shù)要求
- 普佑克四期臨床方案
- 國家級高技能人才培訓(xùn)基地建設(shè)項目實施管理辦法
- 深圳實驗學(xué)校小學(xué)畢業(yè)班數(shù)學(xué)試卷
- 人教精通版小學(xué)英語五年級下冊期末測試
- 自動喂料攪拌機
- 上海初中地理會考知識點匯總(上海鄉(xiāng)土地理
- 《合成生物學(xué)》課件.ppt
- DFZ-6(改)型復(fù)軌器使用說明書
- 企業(yè)職務(wù)犯罪法制講座.ppt
評論
0/150
提交評論