版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022中考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.二次函數(shù)y=﹣(x+2)2﹣1的圖象的對稱軸是()A.直線x=1 B.直線x=﹣1 C.直線x=2 D.直線x=﹣22.若函數(shù)y=kx﹣b的圖象如圖所示,則關(guān)于x的不等式k(x﹣3)﹣b>0的解集為()A.x<2 B.x>2 C.x<5 D.x>53.已知常數(shù)k<0,b>0,則函數(shù)y=kx+b,的圖象大致是下圖中的()A. B.C. D.4.下列圖形中,陰影部分面積最大的是A. B. C. D.5.在娛樂節(jié)目“墻來了!”中,參賽選手背靠水池,迎面沖來一堵泡沫墻,墻上有人物造型的空洞.選手需要按墻上的造型擺出相同的姿勢,才能穿墻而過,否則會被墻推入水池.類似地,有一塊幾何體恰好能以右圖中兩個不同形狀的“姿勢”分別穿過這兩個空洞,則該幾何體為()A. B. C. D.6.如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設(shè)P點運動時間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是()A. B. C. D.7.已知點A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數(shù)y=kx(k<0)的圖象上,若x1<x2<0<x3,則y1,y2,y3A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y28.如圖,為了測量河對岸l1上兩棵古樹A、B之間的距離,某數(shù)學(xué)興趣小組在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則A、B之間的距離為()A.50m B.25m C.(50﹣)m D.(50﹣25)m9.如圖,將一塊三角板的直角頂點放在直尺的一邊上,當∠2=38°時,∠1=()A.52° B.38° C.42° D.60°10.以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過第三象限,則實數(shù)b的取值范圍是()A.b≥1.25 B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤2二、填空題(共7小題,每小題3分,滿分21分)11.如圖,正方形ABCD中,M為BC上一點,ME⊥AM,ME交AD的延長線于點E.若AB=12,BM=5,則DE的長為_________.12.如圖,已知直線l:y=x,過點(2,0)作x軸的垂線交直線l于點N,過點N作直線l的垂線交x軸于點M1;過點M1作x軸的垂線交直線l于N1,過點N1作直線l的垂線交x軸于點M2,……;按此做法繼續(xù)下去,則點M2000的坐標為______________.13.已知點P(3,1)關(guān)于y軸的對稱點Q的坐標是(a+b,﹣1﹣b),則ab的值為_____.14.一個不透明的口袋中有5個紅球,2個白球和1個黑球,它們除顏色外完全相同,從中任意摸出一個球,則摸出的是紅球的概率是_____.15.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_____.16.對于任意不相等的兩個實數(shù),定義運算※如下:※=,如3※2==.那么8※4=.17.若關(guān)于x的方程x2-mx+m=0有兩個相等實數(shù)根,則代數(shù)式2m2-8m+3的值為__________.三、解答題(共7小題,滿分69分)18.(10分)(1)如圖,四邊形為正方形,,那么與相等嗎?為什么?(2)如圖,在中,,,為邊的中點,于點,交于,求的值(3)如圖,中,,為邊的中點,于點,交于,若,,求.19.(5分)解不等式組:,并把解集在數(shù)軸上表示出來。20.(8分)某超市預(yù)測某飲料會暢銷、先用1800元購進一批這種飲料,面市后果然供不應(yīng)求,又用8100元購進這種飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.第一批飲料進貨單價多少元?若兩次進飲料都按同一價格銷售,兩批全部售完后,獲利不少于2700元,那么銷售單價至少為多少元?21.(10分)如圖,某人在山坡坡腳C處測得一座建筑物頂點A的仰角為63.4°,沿山坡向上走到P處再測得該建筑物頂點A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:1.(1)求此人所在位置點P的鉛直高度.(結(jié)果精確到0.1米)(2)求此人從所在位置點P走到建筑物底部B點的路程(結(jié)果精確到0.1米)(測傾器的高度忽略不計,參考數(shù)據(jù):tan53°≈,tan63.4°≈2)22.(10分)如圖,小巷左石兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離BC為0.7米,梯子頂端到地面的距離AC為2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,梯子頂端到地面的距離A′D為1.5米,求小巷有多寬.23.(12分)如圖,在?ABCD中,過點A作AE⊥BC于點E,AF⊥DC于點F,AE=AF.(1)求證:四邊形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF的長.24.(14分)全面兩孩政策實施后,甲,乙兩個家庭有了各自的規(guī)劃.假定生男生女的概率相同,回答下列問題:甲家庭已有一個男孩,準備再生一個孩子,則第二個孩子是女孩的概率是;乙家庭沒有孩子,準備生兩個孩子,求至少有一個孩子是女孩的概率.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
根據(jù)二次函數(shù)頂點式的性質(zhì)解答即可.【詳解】∵y=﹣(x+2)2﹣1是頂點式,∴對稱軸是:x=-2,故選D.【點睛】本題考查二次函數(shù)頂點式y(tǒng)=a(x-h)2+k的性質(zhì),對稱軸為x=h,頂點坐標為(h,k)熟練掌握頂點式的性質(zhì)是解題關(guān)鍵.2、C【解析】
根據(jù)函數(shù)圖象知:一次函數(shù)過點(2,0);將此點坐標代入一次函數(shù)的解析式中,可求出k、b的關(guān)系式;然后將k、b的關(guān)系式代入k(x﹣3)﹣b>0中進行求解即可.【詳解】解:∵一次函數(shù)y=kx﹣b經(jīng)過點(2,0),∴2k﹣b=0,b=2k.函數(shù)值y隨x的增大而減小,則k<0;解關(guān)于k(x﹣3)﹣b>0,移項得:kx>3k+b,即kx>1k;兩邊同時除以k,因為k<0,因而解集是x<1.故選C.【點睛】本題考查一次函數(shù)與一元一次不等式.3、D【解析】
當k<0,b>0時,直線經(jīng)過一、二、四象限,雙曲線在二、四象限,由此確定正確的選項.【詳解】解:∵當k<0,b>0時,直線與y軸交于正半軸,且y隨x的增大而減小,∴直線經(jīng)過一、二、四象限,雙曲線在二、四象限.故選D.【點睛】本題考查了一次函數(shù)、反比例函數(shù)的圖象與性質(zhì).關(guān)鍵是明確系數(shù)與圖象的位置的聯(lián)系.4、C【解析】
分別根據(jù)反比例函數(shù)系數(shù)k的幾何意義以及三角形面積求法以及梯形面積求法得出即可:【詳解】A、根據(jù)反比例函數(shù)系數(shù)k的幾何意義,陰影部分面積和為:xy=1.B、根據(jù)反比例函數(shù)系數(shù)k的幾何意義,陰影部分面積和為:.C、如圖,過點M作MA⊥x軸于點A,過點N作NB⊥x軸于點B,根據(jù)反比例函數(shù)系數(shù)k的幾何意義,S△OAM=S△OAM=,從而陰影部分面積和為梯形MABN的面積:.D、根據(jù)M,N點的坐標以及三角形面積求法得出,陰影部分面積為:.綜上所述,陰影部分面積最大的是C.故選C.5、C【解析】試題分析:通過圖示可知,要想通過圓,則可以是圓柱、圓錐、球,而能通過三角形的只能是圓錐,綜合可知只有圓錐符合條件.故選C6、C【解析】試題分析:由題意可得BQ=x.①0≤x≤1時,P點在BC邊上,BP=3x,則△BPQ的面積=BP?BQ,解y=?3x?x=;故A選項錯誤;②1<x≤2時,P點在CD邊上,則△BPQ的面積=BQ?BC,解y=?x?3=;故B選項錯誤;③2<x≤3時,P點在AD邊上,AP=9﹣3x,則△BPQ的面積=AP?BQ,解y=?(9﹣3x)?x=;故D選項錯誤.故選C.考點:動點問題的函數(shù)圖象.7、D【解析】試題分析:反比例函數(shù)y=-的圖象位于二、四象限,在每一象限內(nèi),y隨x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在該函數(shù)圖象上,且x1<x2<0<x3,,∴y3<y1<y2;故選D.考點:反比例函數(shù)的性質(zhì).8、C【解析】
如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得AB=MN=CM﹣CN,即可得到結(jié)論.【詳解】如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).則AB=MN=(50﹣)m.故選C.【點睛】本題考查了解直角三角形的應(yīng)用.解決此問題的關(guān)鍵在于正確理解題意的基礎(chǔ)上建立數(shù)學(xué)模型,把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.9、A【解析】試題分析:如圖:∵∠3=∠2=38°°(兩直線平行同位角相等),∴∠1=90°﹣∠3=52°,故選A.考點:平行線的性質(zhì).10、A【解析】∵二次函數(shù)y=x2-2(b-2)x+b2-1的圖象不經(jīng)過第三象限,a=1>0,∴Δ≤0或拋物線與x軸的交點的橫坐標均大于等于0.當Δ≤0時,[-2(b-2)]2-4(b2-1)≤0,解得b≥.當拋物線與x軸的交點的橫坐標均大于等于0時,設(shè)拋物線與x軸的交點的橫坐標分別為x1,x2,則x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,無解,∴此種情況不存在.∴b≥.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
由勾股定理可先求得AM,利用條件可證得△ABM∽△EMA,則可求得AE的長,進一步可求得DE.【詳解】詳解:∵正方形ABCD,∴∠B=90°.∵AB=12,BM=5,∴AM=1.∵ME⊥AM,∴∠AME=90°=∠B.∵∠BAE=90°,∴∠BAM+∠MAE=∠MAE+∠E,∴∠BAM=∠E,∴△ABM∽△EMA,∴=,即=,∴AE=,∴DE=AE﹣AD=﹣12=.故答案為.【點睛】本題主要考查相似三角形的判定和性質(zhì),利用條件證得△ABM∽△EMA是解題的關(guān)鍵.12、(24001,0)【解析】分析:根據(jù)直線l的解析式求出,從而得到根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出然后表示出與的關(guān)系,再根據(jù)點在x軸上,即可求出點M2000的坐標詳解:∵直線l:∴∵NM⊥x軸,M1N⊥直線l,∴∴同理,…,所以,點的坐標為點M2000的坐標為(24001,0).故答案為:(24001,0).點睛:考查了一次函數(shù)圖象上點的坐標特征,根據(jù)點的坐標求線段的長度,以及如何根據(jù)線段的長度求出點的坐標,注意各相關(guān)知識的綜合應(yīng)用.13、2【解析】
根據(jù)“關(guān)于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù)”求出ab的值即可.【詳解】∵點P(3,1)關(guān)于y軸的對稱點Q的坐標是(a+b,﹣1﹣b),∴a+b=-3,-1-b=1;解得a=-1,b=-2,∴ab=2.故答案為2.【點睛】本題考查了關(guān)于x軸,y軸對稱的點的坐標,解題的關(guān)鍵是熟練的掌握關(guān)于y軸對稱的點的坐標的性質(zhì).14、【解析】
根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】解:由于共有8個球,其中紅球有5個,則從袋子中隨機摸出一個球,摸出紅球的概率是.故答案為.【點睛】本題考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.15、(y﹣1)1(x﹣1)1.【解析】解:令x+y=a,xy=b,則(xy﹣1)1﹣(x+y﹣1xy)(1﹣x﹣y)=(b﹣1)1﹣(a﹣1b)(1﹣a)=b1﹣1b+1+a1﹣1a﹣1ab+4b=(a1﹣1ab+b1)+1b﹣1a+1=(b﹣a)1+1(b﹣a)+1=(b﹣a+1)1;即原式=(xy﹣x﹣y+1)1=[x(y﹣1)﹣(y﹣1)]1=[(y﹣1)(x﹣1)]1=(y﹣1)1(x﹣1)1.故答案為(y﹣1)1(x﹣1)1.點睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(1)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的時候,要注意整體換元法的靈活應(yīng)用,訓(xùn)練將一個式子看做一個整體,利用上述方法因式分解的能力.16、【解析】
根據(jù)新定義的運算法則進行計算即可得.【詳解】∵※=,∴8※4=,故答案為.17、1.【解析】
根據(jù)方程的系數(shù)結(jié)合根的判別式即可得出△=m2﹣4m=0,將其代入2m2﹣8m+1中即可得出結(jié)論.【詳解】∵關(guān)于x的方程x2﹣mx+m=0有兩個相等實數(shù)根,∴△=(﹣m)2﹣4m=m2﹣4m=0,∴2m2﹣8m+1=2(m2﹣4m)+1=1.故答案為1.【點睛】本題考查了根的判別式,熟練掌握“當△=0時,方程有兩個相等的兩個實數(shù)根”是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)相等,理由見解析;(2)2;(3).【解析】
(1)先判斷出AB=AD,再利用同角的余角相等,判斷出∠ABF=∠DAE,進而得出△ABF≌△DAE,即可得出結(jié)論;
(2)構(gòu)造出正方形,同(1)的方法得出△ABD≌△CBG,進而得出CG=AB,再判斷出△AFB∽△CFG,即可得出結(jié)論;
(3)先構(gòu)造出矩形,同(1)的方法得,∠BAD=∠CBP,進而判斷出△ABD∽△BCP,即可求出CP,再同(2)的方法判斷出△CFP∽△AFB,建立方程即可得出結(jié)論.【詳解】解:(1)BF=AE,理由:
∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=∠D=90°,
∴∠BAE+∠DAE=90°,
∵AE⊥BF,
∴∠BAE+∠ABF=90°,
∴∠ABF=∠DAE,
在△ABF和△DAE中,∴△ABF≌△DAE,
∴BF=AE,(2)如圖2,
過點A作AM∥BC,過點C作CM∥AB,兩線相交于M,延長BF交CM于G,
∴四邊形ABCM是平行四邊形,
∵∠ABC=90°,
∴?ABCM是矩形,
∵AB=BC,
∴矩形ABCM是正方形,
∴AB=BC=CM,
同(1)的方法得,△ABD≌△BCG,
∴CG=BD,
∵點D是BC中點,
∴BD=BC=CM,
∴CG=CM=AB,
∵AB∥CM,
∴△AFB∽△CFG,∴(3)如圖3,在Rt△ABC中,AB=3,BC=4,
∴AC=5,
∵點D是BC中點,
∴BD=BC=2,
過點A作AN∥BC,過點C作CN∥AB,兩線相交于N,延長BF交CN于P,
∴四邊形ABCN是平行四邊形,
∵∠ABC=90°,∴?ABCN是矩形,
同(1)的方法得,∠BAD=∠CBP,
∵∠ABD=∠BCP=90°,
∴△ABD∽△BCP,∴∴∴CP=同(2)的方法,△CFP∽△AFB,∴∴∴CF=.【點睛】本題是四邊形綜合題,主要考查了正方形的性質(zhì)和判定,平行四邊形的判定,矩形的判定和性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),構(gòu)造出(1)題的圖形,是解本題的關(guān)鍵.19、,解集在數(shù)軸上表示見解析【解析】試題分析:先解不等式組中的每一個不等式,得到不等式組的解集,再把不等式的解集表示在數(shù)軸上即可.試題解析:由①得:由②得:∴不等式組的解集為:解集在數(shù)軸上表示為:20、(1)4元/瓶.(2)銷售單價至少為1元/瓶.【解析】
(1)設(shè)第一批飲料進貨單價為x元/瓶,則第二批飲料進貨單價為(x+2)元/瓶,根據(jù)數(shù)量=總價÷單價結(jié)合第二批購進飲料的數(shù)量是第一批的3倍,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;(2)由數(shù)量=總價÷單價可得出第一、二批購進飲料的數(shù)量,設(shè)銷售單價為y元/瓶,根據(jù)利潤=銷售單價×銷售數(shù)量﹣進貨總價結(jié)合獲利不少于2100元,即可得出關(guān)于y的一元一次不等式,解之取其最小值即可得出結(jié)論.【詳解】(1)設(shè)第一批飲料進貨單價為x元/瓶,則第二批飲料進貨單價為(x+2)元/瓶,依題意,得:=3×,解得:x=4,經(jīng)檢驗,x=4是原方程的解,且符合題意.答:第一批飲料進貨單價是4元/瓶;(2)由(1)可知:第一批購進該種飲料450瓶,第二批購進該種飲料1350瓶.設(shè)銷售單價為y元/瓶,依題意,得:(450+1350)y﹣1800﹣8100≥2100,解得:y≥1.答:銷售單價至少為1元/瓶.【點睛】本題考查了分式方程的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出二元一次方程組;(2)根據(jù)各數(shù)量之間的關(guān)系,正確列出一元一次不等式.21、(1)此人所在P的鉛直高度約為14.3米;(2)從P到點B的路程約為17.1米【解析】分析:(1)過P作PF⊥BD于F,作PE⊥AB于E,設(shè)PF=5x,在Rt△ABC中求出AB,用含x的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的長.詳解:過P作PF⊥BD于F,作PE⊥AB于E,∵斜坡的坡度i=5:1,設(shè)PF=5x,CF=1x,∵四邊形BFPE為矩形,∴BF=PEPF=BE.在RT△ABC中,BC=90,tan∠ACB=,∴AB=tan63.4°×BC≈2×90=180,∴AE=AB-BE=AB-PF=180-5x,EP=BC+CF≈90+10x.在RT△AEP中,tan∠APE=,∴x=,∴PF=5x=.答:此人所在P的鉛直高度約為14.3米.由(1)得CP=13x,∴CP=13×37.1,BC+CP=90+37.1=17.1.答:從P到點B的路程約為17.1米.點睛:本題考查了解直角三角形的應(yīng)用,關(guān)鍵是正確的畫出與實際問題相符合的幾何圖形,找出圖形中的相關(guān)線段或角的實際意義及所要解決的問題,構(gòu)造直角三角形,用勾股定理或三角函數(shù)求相應(yīng)的線段長.22、2.7米.【解析】
先根據(jù)勾股定理求出AB的長,同理可得出BD的長,進而可得出結(jié)論.【詳解】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.2米,∴AB2=0.72+2.22=6.1.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B′2,∴BD2+1.52=6.1,∴BD2=2.∵BD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024遠程教育資源共享平臺搭建合同
- 中學(xué)生健康知識競賽
- 2024碼頭船舶污染物接收與處理環(huán)保服務(wù)合同3篇
- 2024碎石交易協(xié)議模板一
- 2024餐館油煙凈化設(shè)備采購合同
- 2024石榴樹品種改良與繁育技術(shù)許可使用合同3篇
- 2025年城市更新項目委托物業(yè)管理合同范本2篇
- 2024融資租賃合同租賃標的及租金
- 2025年度二人家族農(nóng)場合伙經(jīng)營協(xié)議書3篇
- 2024甲乙雙方網(wǎng)絡(luò)游戲開發(fā)與發(fā)行合同
- 《產(chǎn)品價值點》課件
- 供貨商合同協(xié)議書簡單版正規(guī)范本(通用版)
- 2023迎春幫困活動總結(jié)
- 工程全過程造價咨詢服務(wù)方案(技術(shù)方案)
- 慶鈴國五新車型概況課件
- 缺血性腦卒中靜脈溶栓護理
- GB/T 7025.1-2023電梯主參數(shù)及轎廂、井道、機房的型式與尺寸第1部分:Ⅰ、Ⅱ、Ⅲ、Ⅵ類電梯
- 建設(shè)工程總承包計價規(guī)范
- 設(shè)計開發(fā)(更改)評審記錄
- 2023年消費者咨詢業(yè)務(wù)試題及答案
- 常用樂高零件清單36364
評論
0/150
提交評論