教輔同步階段質(zhì)量檢測(cè)數(shù)列_第1頁(yè)
教輔同步階段質(zhì)量檢測(cè)數(shù)列_第2頁(yè)
教輔同步階段質(zhì)量檢測(cè)數(shù)列_第3頁(yè)
教輔同步階段質(zhì)量檢測(cè)數(shù)列_第4頁(yè)
教輔同步階段質(zhì)量檢測(cè)數(shù)列_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

階段質(zhì)量檢測(cè)(二)數(shù)列一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.等比數(shù)列{an}的公比q=-eq\f(1,4),a1=eq\r(2),則數(shù)列{an}是()A.遞增數(shù)列 B.遞減數(shù)列C.常數(shù)數(shù)列 D.?dāng)[動(dòng)數(shù)列解析:選D因?yàn)榈缺葦?shù)列{an}的公比為q=-eq\f(1,4),a1=eq\r(2),故a2<0,a3>0,…,所以數(shù)列{an}是擺動(dòng)數(shù)列.2.若互不相等的實(shí)數(shù)a,b,c成等差數(shù)列,a是b,c的等比中項(xiàng),且a+3b+c=10,則a的值是()A.1 B.-1C.-3 D.-4解析:選D由題意,得eq\b\lc\{\rc\(\a\vs4\al\co1(2b=a+c,,a2=bc,,a+3b+c=10,))解得a=-4,b=2,c=8.3.等差數(shù)列{an}中,a3=2,a5=7,則a7=()A.10 B.20C.16 D.12解析:選D∵{an}是等差數(shù)列,∴d=eq\f(a5-a3,5-3)=eq\f(5,2),∴a7=2+4×eq\f(5,2)=12.4.在數(shù)列{an}中,a1=eq\f(1,3),an=(-1)n·2an-1(n≥2),則a5等于()A.-eq\f(16,3) \f(16,3)C.-eq\f(8,3) \f(8,3)解析:選B∵a1=eq\f(1,3),an=(-1)n·2an-1,∴a2=(-1)2×2×eq\f(1,3)=eq\f(2,3),a3=(-1)3×2×eq\f(2,3)=-eq\f(4,3),a4=(-1)4×2×eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(4,3)))=-eq\f(8,3),a5=(-1)5×2×eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(8,3)))=eq\f(16,3).5.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S10∶S5=1∶2,則S15∶S5=()A.3∶4 B.2∶3C.1∶2 D.1∶3解析:選A在等比數(shù)列{an}中,S5,S10-S5,S15-S10,…成等比數(shù)列,因?yàn)镾10∶S5=1∶2,所以S5=2S10,S15=eq\f(3,4)S5,得S15∶S5=3∶4,故選A.6.在等比數(shù)列{an}中,已知前n項(xiàng)和Sn=5n+1+a,則a的值為()A.-1 B.1C.5 D.-5解析:選D因?yàn)镾n=5n+1+a=5×5n+a,由等比數(shù)列的前n項(xiàng)和Sn=eq\f(a11-qn,1-q)=eq\f(a1,1-q)-eq\f(a1,1-q)·qn,可知其常數(shù)項(xiàng)與qn的系數(shù)互為相反數(shù),所以a=-5.7.已知數(shù)列{an}滿足a1=1,an+1=eq\b\lc\{\rc\(\a\vs4\al\co1(2an,n為正奇數(shù),,an+1,n為正偶數(shù),))則254是該數(shù)列的()A.第8項(xiàng) B.第10項(xiàng)C.第12項(xiàng) D.第14項(xiàng)解析:選D當(dāng)n為正奇數(shù)時(shí),an+1=2an,則a2=2a1=2,當(dāng)n為正偶數(shù)時(shí),an+1=an+1,得a3=3,依次類推得a4=6,a5=7,a6=14,a7=15,…,歸納可得數(shù)列{an}的通項(xiàng)公式an=eq\b\lc\{\rc\(\a\vs4\al\co1(2\f(n+1,2)-1,n為正奇數(shù),,2\f(n,2)+1-2,n為正偶數(shù),))則2eq\f(n,2)+1-2=254,n=14,故選D.8.已知數(shù)列{an}是等差數(shù)列,其前n項(xiàng)和為Sn,若a1a2a3=15,且eq\f(3,S1S3)+eq\f(15,S3S5)+eq\f(5,S5S1)=eq\f(3,5),則a2=()A.2 \f(1,2)C.3 \f(1,3)解析:選C∵S1=a1,S3=3a2,S5=5a3,∴eq\f(1,a1a2)+eq\f(1,a2a3)+eq\f(1,a1a3)=eq\f(3,5),∵a1a2a3=15,∴eq\f(3,5)=eq\f(a3,15)+eq\f(a1,15)+eq\f(a2,15)=eq\f(a2,5),∴a2=3.故選C.9.如果數(shù)列a1,a2-a1,a3-a2,…,an-an-1,…是首項(xiàng)為1、公比為eq\f(1,3)的等比數(shù)列,那么an=()\f(3,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,3n))) \f(3,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,3n-1)))\f(2,3)eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,3n))) \f(2,3)eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,3n-1)))解析:選A由題知a1=1,q=eq\f(1,3),則an-an-1=1×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))n-1.設(shè)數(shù)列a1,a2-a1,…,an-an-1的前n項(xiàng)和為Sn,∴Sn=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=an.又∵Sn=eq\f(1×\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,3n))),1-\f(1,3))=eq\f(3,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,3n))),∴an=eq\f(3,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,3n))).10.已知等比數(shù)列{an}各項(xiàng)均為正數(shù),且a1,eq\f(1,2)a3,a2成等差數(shù)列,則eq\f(a3+a4,a4+a5)等于()\f(\r(5)+1,2) \f(\r(5)-1,2)\f(1-\r(5),2) \f(\r(5)+1,2)或eq\f(\r(5)-1,2)解析:選B由題意,得a3=a1+a2,即a1q2=a1+a1q,∴q2=1+q,解得q=eq\f(1±\r(5),2).又∵{an}各項(xiàng)均為正數(shù),∴q>0,即q=eq\f(1+\r(5),2).∴eq\f(a3+a4,a4+a5)=eq\f(a3+a4,qa3+a4)=eq\f(1,q)=eq\f(\r(5)-1,2).11.設(shè){an}是由正數(shù)組成的等比數(shù)列,Sn為其前n項(xiàng)和,已知a2a4=1,S3=7,則S5\f(15,2) \f(31,4)\f(33,4) \f(17,2)解析:選B設(shè){an}的公比為q,q>0,且aeq\o\al(2,3)=1,∴a3=1.∵S3=7,∴a1+a2+a3=eq\f(1,q2)+eq\f(1,q)+1=7,即6q2-q-1=0,解得q=eq\f(1,2)或q=-eq\f(1,3)(舍去),a1=eq\f(1,q2)=4.∴S5=eq\f(4×\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,25))),1-\f(1,2))=8×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,25)))=eq\f(31,4).12.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,a1=-2014,eq\f(S2007,2007)-eq\f(S2005,2005)=2,則S2016的值為()A.-2016 B.2016C.2015 D.-2015解析:選B因?yàn)镾n為等差數(shù)列{an}的前n項(xiàng)和,所以數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))是等差數(shù)列.設(shè)數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))的公差為d′,則由eq\f(S2007,2007)-eq\f(S2005,2005)=2,得2d′=2,解得d′=1,所以eq\f(S2016,2016)=eq\f(S1,1)+2015d′=a1+2015d′=-2014+2015=1,所以S2016=2016.二、填空題(本大題共4小題,每小題5分,共20分.請(qǐng)把正確答案填在題中的橫線上)13.已知{an}是等差數(shù)列,Sn為其前n項(xiàng)和,n∈N*.若a3=16,S20=20,則S10的值為________.解析:設(shè){an}的首項(xiàng),公差分別是a1,d,則eq\b\lc\{\rc\(\a\vs4\al\co1(a1+2d=16,,20a1+\f(20×20-1,2)×d=20,))解得a1=20,d=-2,∴S10=10×20+eq\f(10×9,2)×(-2)=110.答案:11014.已知數(shù)列{an}的通項(xiàng)公式為an=2015-3n,則使an>0成立的最大正整數(shù)n的值為________.解析:由an=2015-3n>0,得n<eq\f(2015,3)=671eq\f(2,3),又∵n∈N*,∴n的最大值為671.答案:67115.某住宅小區(qū)計(jì)劃植樹不少于100棵,若第一天植2棵,以后每天植樹的棵數(shù)是前一天的2倍,則需要的最少天數(shù)n(n∈N*)等于________.解析:每天植樹的棵數(shù)構(gòu)成以2為首項(xiàng),2為公比的等比數(shù)列,其前n項(xiàng)和Sn=eq\f(a11-qn,1-q)=eq\f(21-2n,1-2)=2n+1-2.由2n+1-2≥100,得2n+1≥102.由于26=64,27=128,則n+1≥7,即n≥6.答案:616.在等比數(shù)列{an}中,若1,a2,a3-1成等差數(shù)列,則eq\f(a3+a4,a5+a6)=________.解析:設(shè)等比數(shù)列的公比為q,依題意,可得2a1q=1+a1q2又a1≠0,整理得q2-2q=0,所以q=2或q=0(舍去),所以eq\f(a3+a4,a5+a6)=eq\f(1,q2)=eq\f(1,4).答案:eq\f(1,4)三、解答題(本大題共6小題,共70分,解答時(shí)寫出必要的文字說明、證明過程或演算步驟)17.(10分)已知函數(shù)f(x)=eq\f(3x,x+3),數(shù)列{xn}的通項(xiàng)由xn=f(xn-1)(n≥2且x∈N*)確定.(1)求證:eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,xn)))是等差數(shù)列;(2)當(dāng)x1=eq\f(1,2)時(shí),求x2016.解:(1)證明:∵xn=f(xn-1)=eq\f(3xn-1,xn-1+3)(n≥2且n∈N*),∴eq\f(1,xn)=eq\f(xn-1+3,3xn-1)=eq\f(1,3)+eq\f(1,xn-1),∴eq\f(1,xn)-eq\f(1,xn-1)=eq\f(1,3)(n≥2且n∈N*),∴eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,xn)))是等差數(shù)列.(2)由(1)知eq\f(1,xn)=eq\f(1,x1)+(n-1)×eq\f(1,3)=2+eq\f(n-1,3)=eq\f(n+5,3).∴eq\f(1,x2016)=eq\f(2016+5,3)=eq\f(2021,3).∴x2016=eq\f(3,2021).18.(12分)已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1=-1,eq\f(S10,S5)=eq\f(31,32).(1)求等比數(shù)列{an}的公比q;(2)求aeq\o\al(2,1)+aeq\o\al(2,2)+…+aeq\o\al(2,n).解:(1)由eq\f(S10,S5)=eq\f(31,32),a1=-1,知公比q≠1,eq\f(S10-S5,S5)=-eq\f(1,32).由等比數(shù)列前n項(xiàng)和的性質(zhì)知S5,S10-S5,S15-S10成等比數(shù)列,且公比為q5,故q5=-eq\f(1,32),q=-eq\f(1,2).(2)由(1),得an=(-1)×eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)))n-1,所以aeq\o\al(2,n)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,4)))n-1,所以數(shù)列{aeq\o\al(2,n)}是首項(xiàng)為1,公比為eq\f(1,4)的等比數(shù)列,故aeq\o\al(2,1)+aeq\o\al(2,2)+…+aeq\o\al(2,n)=eq\f(1×\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,4n))),1-\f(1,4))=eq\f(4,3)eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,4n))).19.(12分)在△ABC中,若lgsinA,lgsinB,lgsinC成等差數(shù)列,且三個(gè)內(nèi)角A,B,C也成等差數(shù)列,試判斷此三角形的形狀.解:∵A,B,C成等差數(shù)列,∴2B=A+C.又∵A+B+C=π,∴3B=π,即B=eq\f(π,3),A+C=eq\f(2,3)π.∵lgsinA,lgsinB,lgsinC成等差數(shù)列,∴2lgsinB=lgsinA+lgsinC,即sin2B=sinAsinC.又∵B=eq\f(π,3),∴sinB=eq\f(\r(3),2).∴sinAsinC=sin2B=eq\f(3,4).又∵cos(A+C)=cosAcosC-sinAsinC,cos(A-C)=cosAcosC+sinAsinC,∴sinAsinC=-eq\f(1,2)[cos(A+C)-cos(A-C)].∴-eq\f(1,2)eq\b\lc\[\rc\](\a\vs4\al\co1(cos\f(2π,3)-cosA-C))=eq\f(3,4).∴eq\f(1,4)+eq\f(1,2)cos(A-C)=eq\f(3,4),∴cos(A-C)=1.∵A-C∈(-π,π),∴A-C=0,即A=C=eq\f(π,3).∴A=B=C.∴△ABC是等邊三角形.20.(12分)在等差數(shù)列{an}中,Sn為其前n項(xiàng)和(n∈N*),且a2=3,S4=16.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=eq\f(1,anan+1),求數(shù)列{bn}的前n項(xiàng)和Tn.解:(1)設(shè)等差數(shù)列{an}的公差是d,由已知條件得eq\b\lc\{\rc\(\a\vs4\al\co1(a1+d=3,,4a1+6d=16,))解得a1=1,d=2,∴an=2n-1.(2)由(1)知,an=2n-1,∴bn=eq\f(1,anan+1)=eq\f(1,2n-12n+1)=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2n-1)-\f(1,2n+1))),Tn=b1+b2+…+bn=eq\f(1,2)eq\b\lc\[\rc\](\a\vs4\al\co1(\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,3)))+\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)-\f(1,5)))+…+\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2n-1)-\f(1,2n+1)))))=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2n+1)))=eq\f(n,2n+1).21.(12分)已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an<an+1,且S3=2S2+1.(1)求數(shù)列{an}的通項(xiàng)公式;(2)若數(shù)列{bn}滿足bn=(2n-1)an(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn.解:(1)設(shè)等比數(shù)列{an}的公比為q,由an<an+1,得q>1,又a1=1,則a2=q,a3=q2,因?yàn)镾3=2S2+1,所以a1+a2+a3=2(a1+a2)+1,則1+q+q2=2(1+q)+1,即q2-q-2=0,解得q=2或q=-1(舍去),所以數(shù)列{an}的通項(xiàng)公式為an=2n-1(n∈N*).(2)由(1)知,bn=(2n-1)·an=(2n-1)·2n-1(n∈N*),則Tn=1×20+3×21+5×22+…+(2n-1)×2n-1,2Tn=1×21+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n,兩式相減,得-Tn=1+2×21+2×22+…+2×2n-1-(2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論