2023年江西省玉山縣第二中學(xué)高三3月份模擬考試數(shù)學(xué)試題(含答案解析)_第1頁
2023年江西省玉山縣第二中學(xué)高三3月份模擬考試數(shù)學(xué)試題(含答案解析)_第2頁
2023年江西省玉山縣第二中學(xué)高三3月份模擬考試數(shù)學(xué)試題(含答案解析)_第3頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.2.已知,滿足條件(為常數(shù)),若目標(biāo)函數(shù)的最大值為9,則()A. B. C. D.3.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成一個(gè)大等邊三角形.設(shè),若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形(陰影部分)的概率是()A. B. C. D.4.已知隨機(jī)變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對所有都成立,則()A. B. C. D.5.已知雙曲線的左、右焦點(diǎn)分別為,圓與雙曲線在第一象限內(nèi)的交點(diǎn)為M,若.則該雙曲線的離心率為A.2 B.3 C. D.6.在中所對的邊分別是,若,則()A.37 B.13 C. D.7.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的值為()A.0 B.1 C. D.8.已知,則,不可能滿足的關(guān)系是()A. B. C. D.9.已知,是雙曲線的兩個(gè)焦點(diǎn),過點(diǎn)且垂直于軸的直線與相交于,兩點(diǎn),若,則△的內(nèi)切圓的半徑為()A. B. C. D.10.已知函數(shù),若方程恰有兩個(gè)不同實(shí)根,則正數(shù)m的取值范圍為()A. B.C. D.11.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B.C. D.12.已知復(fù)數(shù)z滿足,則z的虛部為()A. B.i C.–1 D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知半徑為的圓周上有一定點(diǎn),在圓周上等可能地任意取一點(diǎn)與點(diǎn)連接,則所得弦長介于與之間的概率為__________.14.已知角的終邊過點(diǎn),則______.15.設(shè)滿足約束條件且的最小值為7,則=_________.16.某同學(xué)周末通過拋硬幣的方式?jīng)Q定出去看電影還是在家學(xué)習(xí),拋一枚硬幣兩次,若兩次都是正面朝上,就在家學(xué)習(xí),否則出去看電影,則該同學(xué)在家學(xué)習(xí)的概率為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知某種細(xì)菌的適宜生長溫度為12℃~27℃,為了研究該種細(xì)菌的繁殖數(shù)量(單位:個(gè))隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:溫度/℃14161820222426繁殖數(shù)量/個(gè)2530385066120218對數(shù)據(jù)進(jìn)行初步處理后,得到了一些統(tǒng)計(jì)量的值,如表所示:20784.11123.8159020.5其中,.(1)請繪出關(guān)于的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷與哪一個(gè)更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于溫度的回歸方程類型(給出判斷即可,不必說明理由);(2)根據(jù)(1)的判斷結(jié)果及表格數(shù)據(jù),建立關(guān)于的回歸方程(結(jié)果精確到0.1);(3)當(dāng)溫度為27℃時(shí),該種細(xì)菌的繁殖數(shù)量的預(yù)報(bào)值為多少?參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計(jì)分別為,,參考數(shù)據(jù):.18.(12分)如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,PA⊥底面ABCD,∠BAD=60°,AB=PA=4,E是PA的中點(diǎn),AC,BD交于點(diǎn)O.(1)求證:OE∥平面PBC;(2)求三棱錐E﹣PBD的體積.19.(12分)對于非負(fù)整數(shù)集合(非空),若對任意,或者,或者,則稱為一個(gè)好集合.以下記為的元素個(gè)數(shù).(1)給出所有的元素均小于的好集合.(給出結(jié)論即可)(2)求出所有滿足的好集合.(同時(shí)說明理由)(3)若好集合滿足,求證:中存在元素,使得中所有元素均為的整數(shù)倍.20.(12分)已知函數(shù).其中是自然對數(shù)的底數(shù).(1)求函數(shù)在點(diǎn)處的切線方程;(2)若不等式對任意的恒成立,求實(shí)數(shù)的取值范圍.21.(12分)已知在四棱錐中,平面,,在四邊形中,,,,為的中點(diǎn),連接,為的中點(diǎn),連接.(1)求證:.(2)求二面角的余弦值.22.(10分)已知函數(shù),.(1)判斷函數(shù)在區(qū)間上的零點(diǎn)的個(gè)數(shù);(2)記函數(shù)在區(qū)間上的兩個(gè)極值點(diǎn)分別為、,求證:.

2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【答案解析】

利用基本初等函數(shù)的單調(diào)性判斷各選項(xiàng)中函數(shù)在區(qū)間上的單調(diào)性,進(jìn)而可得出結(jié)果.【題目詳解】對于A選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對于B選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對于C選項(xiàng),函數(shù)在區(qū)間上為減函數(shù);對于D選項(xiàng),函數(shù)在區(qū)間上為增函數(shù).故選:C.【答案點(diǎn)睛】本題考查函數(shù)在區(qū)間上單調(diào)性的判斷,熟悉一些常見的基本初等函數(shù)的單調(diào)性是判斷的關(guān)鍵,屬于基礎(chǔ)題.2.B【答案解析】

由目標(biāo)函數(shù)的最大值為9,我們可以畫出滿足條件件為常數(shù))的可行域,根據(jù)目標(biāo)函數(shù)的解析式形式,分析取得最優(yōu)解的點(diǎn)的坐標(biāo),然后根據(jù)分析列出一個(gè)含參數(shù)的方程組,消參后即可得到的取值.【題目詳解】畫出,滿足的為常數(shù))可行域如下圖:由于目標(biāo)函數(shù)的最大值為9,可得直線與直線的交點(diǎn),使目標(biāo)函數(shù)取得最大值,將,代入得:.故選:.【答案點(diǎn)睛】如果約束條件中含有參數(shù),我們可以先畫出不含參數(shù)的幾個(gè)不等式對應(yīng)的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點(diǎn),然后得到一個(gè)含有參數(shù)的方程(組,代入另一條直線方程,消去,后,即可求出參數(shù)的值.3.A【答案解析】

根據(jù)幾何概率計(jì)算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【題目詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【答案點(diǎn)睛】本題考查了幾何概型的概率計(jì)算問題,是基礎(chǔ)題.4.D【答案解析】

根據(jù)X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數(shù)的性質(zhì)求出其最大值為,進(jìn)而得出結(jié)論.【題目詳解】由X的分布列可得X的期望為,又,所以X的方差,因?yàn)?所以當(dāng)且僅當(dāng)時(shí),取最大值,又對所有成立,所以,解得,故選:D.【答案點(diǎn)睛】本題綜合考查了隨機(jī)變量的期望?方差的求法,結(jié)合了概率?二次函數(shù)等相關(guān)知識,需要學(xué)生具備一定的計(jì)算能力,屬于中檔題.5.D【答案解析】

本題首先可以通過題意畫出圖像并過點(diǎn)作垂線交于點(diǎn),然后通過圓與雙曲線的相關(guān)性質(zhì)判斷出三角形的形狀并求出高的長度,的長度即點(diǎn)縱坐標(biāo),然后將點(diǎn)縱坐標(biāo)帶入圓的方程即可得出點(diǎn)坐標(biāo),最后將點(diǎn)坐標(biāo)帶入雙曲線方程即可得出結(jié)果?!绢}目詳解】根據(jù)題意可畫出以上圖像,過點(diǎn)作垂線并交于點(diǎn),因?yàn)椋陔p曲線上,所以根據(jù)雙曲線性質(zhì)可知,,即,,因?yàn)閳A的半徑為,是圓的半徑,所以,因?yàn)?,,,,所以,三角形是直角三角形,因?yàn)?,所以,,即點(diǎn)縱坐標(biāo)為,將點(diǎn)縱坐標(biāo)帶入圓的方程中可得,解得,,將點(diǎn)坐標(biāo)帶入雙曲線中可得,化簡得,,,,故選D?!敬鸢更c(diǎn)睛】本題考查了圓錐曲線的相關(guān)性質(zhì),主要考察了圓與雙曲線的相關(guān)性質(zhì),考查了圓與雙曲線的綜合應(yīng)用,考查了數(shù)形結(jié)合思想,體現(xiàn)了綜合性,提高了學(xué)生的邏輯思維能力,是難題。6.D【答案解析】

直接根據(jù)余弦定理求解即可.【題目詳解】解:∵,∴,∴,故選:D.【答案點(diǎn)睛】本題主要考查余弦定理解三角形,屬于基礎(chǔ)題.7.A【答案解析】

根據(jù)輸入的值大小關(guān)系,代入程序框圖即可求解.【題目詳解】輸入,,因?yàn)?,所以由程序框圖知,輸出的值為.故選:A【答案點(diǎn)睛】本題考查了對數(shù)式大小比較,條件程序框圖的簡單應(yīng)用,屬于基礎(chǔ)題.8.C【答案解析】

根據(jù)即可得出,,根據(jù),,即可判斷出結(jié)果.【題目詳解】∵;∴,;∴,,故正確;,故C錯誤;∵,故D正確故C.【答案點(diǎn)睛】本題主要考查指數(shù)式和對數(shù)式的互化,對數(shù)的運(yùn)算,以及基本不等式:和不等式的應(yīng)用,屬于中檔題9.B【答案解析】

設(shè)左焦點(diǎn)的坐標(biāo),由AB的弦長可得a的值,進(jìn)而可得雙曲線的方程,及左右焦點(diǎn)的坐標(biāo),進(jìn)而求出三角形ABF2的面積,再由三角形被內(nèi)切圓的圓心分割3個(gè)三角形的面積之和可得內(nèi)切圓的半徑.【題目詳解】由雙曲線的方程可設(shè)左焦點(diǎn),由題意可得,由,可得,所以雙曲線的方程為:所以,所以三角形ABF2的周長為設(shè)內(nèi)切圓的半徑為r,所以三角形的面積,所以,解得,故選:B【答案點(diǎn)睛】本題考查求雙曲線的方程和雙曲線的性質(zhì)及三角形的面積的求法,內(nèi)切圓的半徑與三角形長周長的一半之積等于三角形的面積可得半徑的應(yīng)用,屬于中檔題.10.D【答案解析】

當(dāng)時(shí),函數(shù)周期為,畫出函數(shù)圖像,如圖所示,方程兩個(gè)不同實(shí)根,即函數(shù)和有圖像兩個(gè)交點(diǎn),計(jì)算,,根據(jù)圖像得到答案.【題目詳解】當(dāng)時(shí),,故函數(shù)周期為,畫出函數(shù)圖像,如圖所示:方程,即,即函數(shù)和有兩個(gè)交點(diǎn).,,故,,,,.根據(jù)圖像知:.故選:.【答案點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)問題,確定函數(shù)周期畫出函數(shù)圖像是解題的關(guān)鍵.11.B【答案解析】

由題意首先確定幾何體的空間結(jié)構(gòu)特征,然后結(jié)合空間結(jié)構(gòu)特征即可求得其表面積.【題目詳解】由三視圖可知,該幾何體為邊長為正方體挖去一個(gè)以為球心以為半徑球體的,如圖,故其表面積為,故選:B.【答案點(diǎn)睛】(1)以三視圖為載體考查幾何體的表面積,關(guān)鍵是能夠?qū)o出的三視圖進(jìn)行恰當(dāng)?shù)姆治?,從三視圖中發(fā)現(xiàn)幾何體中各元素間的位置關(guān)系及數(shù)量關(guān)系.(2)多面體的表面積是各個(gè)面的面積之和;組合體的表面積應(yīng)注意重合部分的處理.(3)圓柱、圓錐、圓臺的側(cè)面是曲面,計(jì)算側(cè)面積時(shí)需要將這個(gè)曲面展為平面圖形計(jì)算,而表面積是側(cè)面積與底面圓的面積之和.12.C【答案解析】

利用復(fù)數(shù)的四則運(yùn)算可得,即可得答案.【題目詳解】∵,∴,∴,∴復(fù)數(shù)的虛部為.故選:C.【答案點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算、虛部概念,考查運(yùn)算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】在圓上其他位置任取一點(diǎn)B,設(shè)圓半徑為R,其中滿足條件AB弦長介于與之間的弧長為?2πR,則AB弦的長度大于等于半徑長度的概率P==;故答案為:.14.【答案解析】

由題意利用任意角的三角函數(shù)的定義,兩角和差正弦公式,求得的值.【題目詳解】解:∵角的終邊過點(diǎn),∴,,∴,故答案為:.【答案點(diǎn)睛】本題主要考查任意角的三角函數(shù)的定義,兩角和差正弦公式,屬于基礎(chǔ)題.15.3【答案解析】

根據(jù)約束條件畫出可行域,再把目標(biāo)函數(shù)轉(zhuǎn)化為,對參數(shù)a分類討論,當(dāng)時(shí)顯然不滿足題意;當(dāng)時(shí),直線經(jīng)過可行域中的點(diǎn)A時(shí),截距最小,即z有最小值,再由最小值為7,得出結(jié)果;當(dāng)時(shí),的截距沒有最小值,即z沒有最小值;當(dāng)時(shí),的截距沒有最大值,即z沒有最小值,綜上可得出結(jié)果.【題目詳解】根據(jù)約束條件畫出可行域如下:由,可得出交點(diǎn),由可得,當(dāng)時(shí)顯然不滿足題意;當(dāng)即時(shí),由可行域可知當(dāng)直線經(jīng)過可行域中的點(diǎn)A時(shí),截距最小,即z有最小值,即,解得或(舍);當(dāng)即時(shí),由可行域可知的截距沒有最小值,即z沒有最小值;當(dāng)即時(shí),根據(jù)可行域可知的截距沒有最大值,即z沒有最小值.綜上可知滿足條件時(shí).故答案為:3.【答案點(diǎn)睛】本題主要考查線性規(guī)劃問題,約束條件和目標(biāo)函數(shù)中都有參數(shù),要對參數(shù)進(jìn)行討論.16.【答案解析】

采用列舉法計(jì)算古典概型的概率.【題目詳解】拋擲一枚硬幣兩次共有4種情況,即(正,正),(正,反),(反,正),(反,反),在家學(xué)習(xí)只有1種情況,即(正,正),故該同學(xué)在家學(xué)習(xí)的概率為.故答案為:【答案點(diǎn)睛】本題考查古典概型的概率計(jì)算,考查學(xué)生的基本計(jì)算能力,是一道基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)作圖見解析;更適合(2)(3)預(yù)報(bào)值為245【答案解析】

(1)由散點(diǎn)圖即可得到答案;(2)把兩邊取自然對數(shù),得,由計(jì)算得到,再將代入可得,最終求得,即;(3)將代入中計(jì)算即可.【題目詳解】解:(1)繪出關(guān)于的散點(diǎn)圖,如圖所示:由散點(diǎn)圖可知,更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于的回歸方程類型;(2)把兩邊取自然對數(shù),得,即,由.∴,則關(guān)于的回歸方程為;(3)當(dāng)時(shí),計(jì)算可得;即溫度為27℃時(shí),該種細(xì)菌的繁殖數(shù)量的預(yù)報(bào)值為245.【答案點(diǎn)睛】本題考查求非線性回歸方程及其應(yīng)用的問題,考查學(xué)生數(shù)據(jù)處理能力及運(yùn)算能力,是一道中檔題.18.(1)證明見解析(2)【答案解析】

(1)連接OE,利用三角形中位線定理得到OE∥PC,即可證出OE∥平面PBC;(2)由E是PA的中點(diǎn),,求出S△ABD,即可求解.【題目詳解】(1)證明:如圖所示:∵點(diǎn)O,E分別是AC,PA的中點(diǎn),∴OE是△PAC的中位線,∴OE∥PC,又∵OE平面PBC,PC平面PBC,∴OE∥平面PBC;(2)解:∵PA=AB=4,∴AE=2,∵底面ABCD為菱形,∠BAD=60°,∴S△ABD,∴三棱錐E﹣PBD的體積.【答案點(diǎn)睛】本題考查空間線、面位置關(guān)系,證明直線與平面平行以及求三棱錐的體積,注意等體積法的應(yīng)用,考查邏輯推理、數(shù)學(xué)計(jì)算能力,屬于基礎(chǔ)題.19.(1),,,.(2);證明見解析.(3)證明見解析.【答案解析】

(1)根據(jù)好集合的定義列舉即可得到結(jié)果;(2)設(shè),其中,由知;由可知或,分別討論兩種情況可的結(jié)果;(3)記,則,設(shè),由歸納推理可求得,從而得到,從而得到,可知存在元素滿足題意.【題目詳解】(1),,,.(2)設(shè),其中,則由題意:,故,即,考慮,可知:,或,若,則考慮,,,則,,但此時(shí),,不滿足題意;若,此時(shí),滿足題意,,其中為相異正整數(shù).(3)記,則,首先,,設(shè),其中,分別考慮和其他任一元素,由題意可得:也在中,而,,,對于,考慮,,其和大于,故其差,特別的,,,由,且,,以此類推:,,此時(shí),故中存在元素,使得中所有元素均為的整數(shù)倍.【答案點(diǎn)睛】本題考查集合中的新定義問題的求解,關(guān)鍵是明確已知中所給的新定義的具體要求,根據(jù)集合元素的要求進(jìn)行推理說明,對于學(xué)生分析和解決問題能力、邏輯推理能力有較高的要求,屬于較難題.20.(1);(2).【答案解析】

(1)利用導(dǎo)數(shù)的幾何意義求出切線的斜率,再求出切點(diǎn)坐標(biāo)即可得在點(diǎn)處的切線方程;(2)令,然后利用導(dǎo)數(shù)并根據(jù)a的情況研究函數(shù)的單調(diào)性和最值.【題目詳解】(1),,∴,又,∴切線方程為,即.(2)令,,①若,則在上單調(diào)遞減,又,∴恒成立,∴在上單調(diào)遞減,又,∴恒成立.②若,令,∴,易知與在上單調(diào)遞減,∴在上單調(diào)遞減,,當(dāng)即時(shí),在上恒成立,∴在上單調(diào)遞減,即在上單調(diào)遞減,又,∴恒成立,∴在上單調(diào)遞減,又,∴恒成立,當(dāng)即時(shí),使,∴在遞增,此時(shí),∴,∴在遞增,∴,不合題意.綜上,實(shí)數(shù)的取值范圍是.【答案點(diǎn)睛】本題主要考查導(dǎo)數(shù)的幾何意義及構(gòu)造函數(shù)解決含參數(shù)的不等式恒成立時(shí)求參數(shù)的取值范圍問題,第二問的難點(diǎn)是構(gòu)造函數(shù)后二次求導(dǎo)問題,對分類討論思想及化歸與

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論