江西省吉安市吉水縣第二中學(xué)2023學(xué)年高考沖刺數(shù)學(xué)模擬試題(含答案解析)_第1頁
江西省吉安市吉水縣第二中學(xué)2023學(xué)年高考沖刺數(shù)學(xué)模擬試題(含答案解析)_第2頁
江西省吉安市吉水縣第二中學(xué)2023學(xué)年高考沖刺數(shù)學(xué)模擬試題(含答案解析)_第3頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),分別為雙曲線(a>0,b>0)的左、右焦點(diǎn),過點(diǎn)作圓的切線與雙曲線的左支交于點(diǎn)P,若,則雙曲線的離心率為()A. B. C. D.2.已知復(fù)數(shù),,則()A. B. C. D.3.公差不為零的等差數(shù)列{an}中,a1+a2+a5=13,且a1、a2、a5成等比數(shù)列,則數(shù)列{an}的公差等于()A.1 B.2 C.3 D.44.若,則實(shí)數(shù)的大小關(guān)系為()A. B. C. D.5.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件6.設(shè)M是邊BC上任意一點(diǎn),N為AM的中點(diǎn),若,則的值為()A.1 B. C. D.7.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件8.設(shè)雙曲線(a>0,b>0)的右焦點(diǎn)為F,右頂點(diǎn)為A,過F作AF的垂線與雙曲線交于B,C兩點(diǎn),過B,C分別作AC,AB的垂線交于點(diǎn)D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.9.已知拋物線:,點(diǎn)為上一點(diǎn),過點(diǎn)作軸于點(diǎn),又知點(diǎn),則的最小值為()A. B. C.3 D.510.設(shè)函數(shù)定義域?yàn)槿w實(shí)數(shù),令.有以下6個(gè)論斷:①是奇函數(shù)時(shí),是奇函數(shù);②是偶函數(shù)時(shí),是奇函數(shù);③是偶函數(shù)時(shí),是偶函數(shù);④是奇函數(shù)時(shí),是偶函數(shù)⑤是偶函數(shù);⑥對(duì)任意的實(shí)數(shù),.那么正確論斷的編號(hào)是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤11.已知函數(shù)若關(guān)于的方程有六個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.12.已知為一條直線,為兩個(gè)不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本題共4小題,每小題5分,共20分。13.將函數(shù)的圖像向右平移個(gè)單位,得到函數(shù)的圖像,則函數(shù)在區(qū)間上的值域?yàn)開_________.14.已知內(nèi)角的對(duì)邊分別為外接圓的面積為,則的面積為_________.15.(5分)已知曲線的方程為,其圖象經(jīng)過點(diǎn),則曲線在點(diǎn)處的切線方程是____________.16.兩光滑的曲線相切,那么它們?cè)诠颤c(diǎn)處的切線方向相同.如圖所示,一列圓(an>0,rn>0,n=1,2…)逐個(gè)外切,且均與曲線y=x2相切,若r1=1,則a1=___,rn=______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四邊形為菱形,為與的交點(diǎn),平面.(1)證明:平面平面;(2)若,,三棱錐的體積為,求菱形的邊長.18.(12分)已知點(diǎn)為橢圓上任意一點(diǎn),直線與圓交于,兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).(1)求證:直線與橢圓相切;(2)判斷是否為定值,并說明理由.19.(12分)已知件次品和件正品混放在一起,現(xiàn)需要通過檢測(cè)將其區(qū)分,每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出件次品或者檢測(cè)出件正品時(shí)檢測(cè)結(jié)束.(1)求第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品的概率;(2)已知每檢測(cè)一件產(chǎn)品需要費(fèi)用元,設(shè)表示直到檢測(cè)出件次品或者檢測(cè)出件正品時(shí)所需要的檢測(cè)費(fèi)用(單位:元),求的分布列.20.(12分)某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線上隨機(jī)抽取件產(chǎn)品,統(tǒng)計(jì)其質(zhì)量指標(biāo)值并繪制頻率分布直方圖(如圖1):規(guī)定產(chǎn)品的質(zhì)量指標(biāo)值在的為劣質(zhì)品,在的為優(yōu)等品,在的為特優(yōu)品,銷售時(shí)劣質(zhì)品每件虧損元,優(yōu)等品每件盈利元,特優(yōu)品每件盈利元,以這件產(chǎn)品的質(zhì)量指標(biāo)值位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指標(biāo)值位于該區(qū)間的概率.(1)求每件產(chǎn)品的平均銷售利潤;(2)該企業(yè)主管部門為了解企業(yè)年?duì)I銷費(fèi)用(單位:萬元)對(duì)年銷售量(單位:萬件)的影響,對(duì)該企業(yè)近年的年?duì)I銷費(fèi)用和年銷售量,數(shù)據(jù)做了初步處理,得到的散點(diǎn)圖(如圖2)及一些統(tǒng)計(jì)量的值.表中,,,.根據(jù)散點(diǎn)圖判斷,可以作為年銷售量(萬件)關(guān)于年?duì)I銷費(fèi)用(萬元)的回歸方程.①求關(guān)于的回歸方程;②用所求的回歸方程估計(jì)該企業(yè)每年應(yīng)投入多少營銷費(fèi),才能使得該企業(yè)的年收益的預(yù)報(bào)值達(dá)到最大?(收益銷售利潤營銷費(fèi)用,取)附:對(duì)于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.21.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)若存在兩個(gè)極值點(diǎn),,證明:.22.(10分)如圖,在正四棱錐中,底面正方形的對(duì)角線交于點(diǎn)且(1)求直線與平面所成角的正弦值;(2)求銳二面角的大小.

2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【答案解析】

設(shè)過點(diǎn)作圓的切線的切點(diǎn)為,根據(jù)切線的性質(zhì)可得,且,再由和雙曲線的定義可得,得出為中點(diǎn),則有,得到,即可求解.【題目詳解】設(shè)過點(diǎn)作圓的切線的切點(diǎn)為,,所以是中點(diǎn),,,.故選:C.【答案點(diǎn)睛】本題考查雙曲線的性質(zhì)、雙曲線定義、圓的切線性質(zhì),意在考查直觀想象、邏輯推理和數(shù)學(xué)計(jì)算能力,屬于中檔題.2.B【答案解析】分析:利用的恒等式,將分子、分母同時(shí)乘以,化簡整理得詳解:,故選B點(diǎn)睛:復(fù)數(shù)問題是高考數(shù)學(xué)中的??紗栴},屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運(yùn)算,在運(yùn)算時(shí)注意符號(hào)的正、負(fù)問題.3.B【答案解析】

設(shè)數(shù)列的公差為.由,成等比數(shù)列,列關(guān)于的方程組,即求公差.【題目詳解】設(shè)數(shù)列的公差為,①.成等比數(shù)列,②,解①②可得.故選:.【答案點(diǎn)睛】本題考查等差數(shù)列基本量的計(jì)算,屬于基礎(chǔ)題.4.A【答案解析】

將化成以為底的對(duì)數(shù),即可判斷的大小關(guān)系;由對(duì)數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關(guān)系,從而可判斷三者的大小關(guān)系.【題目詳解】依題意,由對(duì)數(shù)函數(shù)的性質(zhì)可得.又因?yàn)椋?故選:A.【答案點(diǎn)睛】本題考查了指數(shù)函數(shù)的性質(zhì),考查了對(duì)數(shù)函數(shù)的性質(zhì),考查了對(duì)數(shù)的運(yùn)算性質(zhì).兩個(gè)對(duì)數(shù)型的數(shù)字比較大小時(shí),底數(shù)相同,則構(gòu)造對(duì)數(shù)函數(shù),結(jié)合對(duì)數(shù)的單調(diào)性可判斷大?。蝗粽鏀?shù)相同,則結(jié)合對(duì)數(shù)函數(shù)的圖像或者換底公式可判斷大??;若真數(shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.5.B【答案解析】

先求出滿足的值,然后根據(jù)充分必要條件的定義判斷.【題目詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.【答案點(diǎn)睛】本題考查充分必要條件,掌握充分必要條件的定義是解題基礎(chǔ).解題時(shí)可根據(jù)條件與結(jié)論中參數(shù)的取值范圍進(jìn)行判斷.6.B【答案解析】

設(shè),通過,再利用向量的加減運(yùn)算可得,結(jié)合條件即可得解.【題目詳解】設(shè),則有.又,所以,有.故選B.【答案點(diǎn)睛】本題考查了向量共線及向量運(yùn)算知識(shí),利用向量共線及向量運(yùn)算知識(shí),用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.7.C【答案解析】

先根據(jù)直線與直線平行確定的值,進(jìn)而即可確定結(jié)果.【題目詳解】因?yàn)橹本€與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【答案點(diǎn)睛】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎(chǔ)題型.8.A【答案解析】

由題意,根據(jù)雙曲線的對(duì)稱性知在軸上,設(shè),則由得:,因?yàn)榈街本€的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.9.C【答案解析】

由,再運(yùn)用三點(diǎn)共線時(shí)和最小,即可求解.【題目詳解】.故選:C【答案點(diǎn)睛】本題考查拋物線的定義,合理轉(zhuǎn)化是本題的關(guān)鍵,注意拋物線的性質(zhì)的靈活運(yùn)用,屬于中檔題.10.A【答案解析】

根據(jù)函數(shù)奇偶性的定義即可判斷函數(shù)的奇偶性并證明.【題目詳解】當(dāng)是偶函數(shù),則,所以,所以是偶函數(shù);當(dāng)是奇函數(shù)時(shí),則,所以,所以是偶函數(shù);當(dāng)為非奇非偶函數(shù)時(shí),例如:,則,,此時(shí),故⑥錯(cuò)誤;故③④正確.故選:A【答案點(diǎn)睛】本題考查了函數(shù)的奇偶性定義,掌握奇偶性定義是解題的關(guān)鍵,屬于基礎(chǔ)題.11.B【答案解析】

令,則,由圖象分析可知在上有兩個(gè)不同的根,再利用一元二次方程根的分布即可解決.【題目詳解】令,則,如圖與頂多只有3個(gè)不同交點(diǎn),要使關(guān)于的方程有六個(gè)不相等的實(shí)數(shù)根,則有兩個(gè)不同的根,設(shè)由根的分布可知,,解得.故選:B.【答案點(diǎn)睛】本題考查復(fù)合方程根的個(gè)數(shù)問題,涉及到一元二次方程根的分布,考查學(xué)生轉(zhuǎn)化與化歸和數(shù)形結(jié)合的思想,是一道中檔題.12.D【答案解析】A.若,則或,故A錯(cuò)誤;B.若,則或故B錯(cuò)誤;C.若,則或,或與相交;D.若,則,正確.故選D.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】

根據(jù)圖像的平移變換得到函數(shù)的解析式,再利用整體思想求函數(shù)的值域.【題目詳解】函數(shù)的圖像向右平移個(gè)單位得,,,.故答案為:.【答案點(diǎn)睛】本題考查三角函數(shù)圖像的平移變換、值域的求解,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時(shí)注意整體思想的運(yùn)用.14.【答案解析】

由外接圓面積,求出外接圓半徑,然后由正弦定理可求得三角形的內(nèi)角,從而有,于是可得三角形邊長,可得面積.【題目詳解】設(shè)外接圓半徑為,則,由正弦定理,得,∴,,.故答案為:.【答案點(diǎn)睛】本題考查正弦定理,利用正弦定理求出三角形的內(nèi)角,然后可得邊長,從而得面積,掌握正弦定理是解題關(guān)鍵.15.【答案解析】

依題意,將點(diǎn)的坐標(biāo)代入曲線的方程中,解得.由,得,則曲線在點(diǎn)處切線的斜率,所以在點(diǎn)處的切線方程是,即.16.【答案解析】

第一空:將圓與聯(lián)立,利用計(jì)算即可;第二空:找到兩外切的圓的圓心與半徑的關(guān)系,再將與聯(lián)立,得到,與結(jié)合可得為等差數(shù)列,進(jìn)而可得.【題目詳解】當(dāng)r1=1時(shí),圓,與聯(lián)立消去得,則,解得;由圖可知當(dāng)時(shí),①,將與聯(lián)立消去得,則,整理得,代入①得,整理得,則.故答案為:;.【答案點(diǎn)睛】本題是拋物線與圓的關(guān)系背景下的數(shù)列題,關(guān)鍵是找到圓心和半徑的關(guān)系,建立遞推式,由遞推式求通項(xiàng)公式,綜合性較強(qiáng),是一道難度較大的題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2)1【答案解析】

(1)由菱形的性質(zhì)和線面垂直的性質(zhì),可得平面,再由面面垂直的判定定理,即可得證;(2)設(shè),分別求得,和的長,運(yùn)用三棱錐的體積公式,計(jì)算可得所求值.【題目詳解】(1)四邊形為菱形,,平面,,又,平面,又平面,平面平面;(2)設(shè),在菱形中,由,可得,,,,在中,可得,由面,知,為直角三角形,可得,三棱錐的體積,,菱形的邊長為1.【答案點(diǎn)睛】本題考查面面垂直的判定,注意運(yùn)用線面垂直轉(zhuǎn)化,考查三棱錐的體積的求法,考查化簡運(yùn)算能力和推理能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.18.(1)證明見解析;(2)是,理由見解析.【答案解析】

(1)根據(jù)判別式即可證明.(2)根據(jù)向量的數(shù)量積和韋達(dá)定理即可證明,需要分類討論,【題目詳解】解:(1)當(dāng)時(shí)直線方程為或,直線與橢圓相切.當(dāng)時(shí),由得,由題知,,即,所以.故直線與橢圓相切.(2)設(shè),,當(dāng)時(shí),,,,所以,即.當(dāng)時(shí),由得,則,,.因?yàn)?所以,即.故為定值.【答案點(diǎn)睛】本題考查橢圓的簡單性質(zhì),考查向量的運(yùn)算,注意直線方程和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理,考查化簡整理的運(yùn)算能力,屬于中檔題.19.(1);(2)見解析.【答案解析】

(1)利用獨(dú)立事件的概率乘法公式可計(jì)算出所求事件的概率;(2)由題意可知隨機(jī)變量的可能取值有、、,計(jì)算出隨機(jī)變量在不同取值下的概率,由此可得出隨機(jī)變量的分布列.【題目詳解】(1)記“第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品”為事件,則;(2)由題意可知,隨機(jī)變量的可能取值為、、.則,,.故的分布列為【答案點(diǎn)睛】本題考查概率的計(jì)算,同時(shí)也考查了隨機(jī)變量分布列,考查計(jì)算能力,屬于基礎(chǔ)題.20.(1)元.(2)①②萬元【答案解析】

(1)每件產(chǎn)品的銷售利潤為,由已知可得的取值,由頻率分布直方圖可得劣質(zhì)品、優(yōu)等品、特優(yōu)品的概率,從而可得的概率分布列,依期望公式計(jì)算出期望即為平均銷售利潤;(2)①對(duì)取自然對(duì)數(shù),得,令,,,則,這就是線性回歸方程,由所給公式數(shù)據(jù)計(jì)算出系數(shù),得線性回歸方程,從而可求得;②求出收益,可設(shè)換元后用導(dǎo)數(shù)求出最大值.【題目詳解】解:(1)設(shè)每件產(chǎn)品的銷售利潤為,則的可能取值為,,.由頻率分布直方圖可得產(chǎn)品為劣質(zhì)品、優(yōu)等品、特優(yōu)品的概率分別為、、.所以;;.所以的分布列為所以(元).即每件產(chǎn)品的平均銷售利潤為元.(2)①由,得,令,,,則,由表中數(shù)據(jù)可得,則,所以,即,因?yàn)槿?,所以,故所求的回歸方程為.②設(shè)年收益為萬元,則令,則,,當(dāng)時(shí),,當(dāng)時(shí),,所以當(dāng),即時(shí),有最大值.即該企業(yè)每年應(yīng)該投入萬元營銷費(fèi),能使得該企業(yè)的年收益的預(yù)報(bào)值達(dá)到最大,最大收益為萬元.【答案點(diǎn)睛】本題考查頻率分布直方圖,考查隨機(jī)變量概率分布列與期望,考查求線性回歸直線方程,及回歸方程的應(yīng)用.在求指數(shù)型回歸方程時(shí),可通過取對(duì)數(shù)的方法轉(zhuǎn)化為求線性回歸直線方程,然后再求出指數(shù)型回歸方程.21.(1)見解析;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論