




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Chapter6CollegeofNuclearScienceandTechnologyEmpiricalandPracticalRelationsforForced-ConvectionHeatTransfer
1Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology26-1Introduction
ThediscussionandanalysesofChapter5haveshownhowforced-convectionheattransfermaybecalculatedforseveralcasesofpracticalinterest;however,theproblemsconsideredwerethosethatcouldsolvedinananalyticalfashion.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology3But,itisnotalwayspossibletoobtainanalyticalsolutionstoconvectionproblems,andtheindividualisforcedtoresorttoexperimentalmethodstoobtaindesigninformation,aswellastosecurethemoreelusivedatethatincreasethephysicalunderstandingoftheprocess.Whatwehavetodo:Generalizetheresultsofone’sexperimentsinformofsomeempiricalcorrelationChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology4DifficultiesWhichvariablesshouldwemeasure?Whatfunctionalformshouldthedatabeorganizedinto?It’shardandexpensivetodotheexperiments,so,howmanyexperimentsshouldwedo?Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology5SimilarityConsiderationsPurpose:todoresearchontherelationshipbetweensimilarphysicalphenomena.Forsimilarphysicalphenomena:atcorrespondingtimewithcorrespondinglocationonthephysicalquantityrelatedwiththephenomenoncorrespondenceproportional.Forsametypeofphenomena:Phenomenondescribedbydifferentialequationswiththesameformandcontent.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology6CharacteristicsforphysicalphenomenasimilarityThesamecharacteristicnumbersareequalThereissomewhatrelationshipbetweendifferentcharacteristics.ForexampleChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology7TheconditionsforphysicalphenomenasimilaritySameidentifiedcharacteristicnumbersareequalIt’ssimilarforMonodromyconditions,whichincludesinitialconditions,boundaryconditionsandGeometricconditionsChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology8HowtogetdimensionlessgroupsSimilarityConsiderations:Toestablishthecolumnproportioncoefficientbetweenthetwophenomena,relationshipbetweentheexportofthesesimilaritycoefficientandobtainadimensionlessquantitybasedonKnownmathematicaldescriptionofthephysicalphenomena.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology9Phenomenon1:Phenomenon2:mathematicaldescriptionChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology10EstablishsimilarmultiplesRelationshipbetweenthemChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology11BerkeleynumberToobtaindimensionlessgroups
Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology12DimensionalAnalysisIndimensionalanalysis,dimensionalgroupssuchastheReynoldsandPrandtlnumbersarederivedfrompurelydimensionalandfunctionalconsiderations.FundamentalBasisTheoremof,Aconsistentdimensionlessequationshowingtherelationshipbetweenthenphysicalquantitiescouldbetransferredtoarelationshipwhichcontains(n-r)independentdimensionlessgroups.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology13AdvantagesofdimensionlessanalysisSimpleWecanstillobtaindimensionlessgroupswithoutknowingtheDifferentialEquationsFundamentalquantityintheSIUnitsLength[m],MASS[kg],time[s],ELECTRICCURRENT[A],thermodynamictemperature[K],amountofsubstance[mol],luminousintensity[cd]Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology14NowwecomebacktothedifficultiesWhichvariablesshouldwemeasure?
OnlyvariablesthatarecontainedincharacteristicnumbersWhatfunctionalformshouldthedatabeorganizedinto?
ArrangethedataaccordingtotherelationshipbetweenthecharacteristicnumbersIt’shardandexpensivetodotheexperiments,so,howmanyexperimentsshouldwedo?
ModularExperimentsundertheguidanceofthesimilarconsiderationChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology15Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology166-2EmpiricalRelationsForPipeAndTubeFlowCasesofUndevelopedFlowThecasesofundevelopedlaminarflowsystemswherethefluidpropertiesvarywidelywithtemperature,andturbulent-flowsystemsareconsiderablymorecomplicatedbutareofveryimportantpracticalinterestinheatexchangersandassociatedheat-transferequipment.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology17Fordesignandengineeringpurposes,empiricalcorrelationsareusuallyofgreatestpracticalutility.Forlaminarflow,thelengthoftheundevelopedpartundevelopeddeveloped(Averagefrom0tox)Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology18Forturbulentflow,thelengthoftheundevelopedpartundevelopeddeveloped(Averagefrom0tox)Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology19FurtherconsiderationtoBulktemperatureChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology20FortubeinFigure6-1thetotalenergyaddedcanbeexpressedintermsofbulk-temperaturebyIndifferentialequation,TheTwandTbherearethewallandbulktemperatureattheparticularxlocation.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology21Thetotalheattransfercanalsobeexpressedas[6-3]whereAisthetotalsurfaceareaforheattransfer.BecausebothTwandTbcanvaryalongthelengthofthetube,asuitableaveragingprocessmustbeadoptedforusewithEquation(6-3).Inchapter10we’lldiscussdifferentmethodsfortakingproperaccountoftemperaturevariationsinheatexchangers.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology22AtraditionexpressionforcalculationofheattransferinfullydevelopedturbulentflowinsmoothtubesForheatingofthefluidForcoolingofthefluidChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology23ConditionsChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology24WidetemperaturedifferencesThesepropertyvariationsmaybeevidencedbyachangeinthevelocityprofileasindicatedinthefigure.1.Inothermalflow2.Gasheating,Liquidcooling3.Liquidheating,gascoolingChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology25SomerelationstakepropertyvariationsintoaccountGasheatingGascoolingLiquidHeatingLiquidCoolingChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology26ConditionsChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology27ConditionsChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology28Ifthechannelthroughwhichthefluidflowsisnorcircularcrossthesection,itisrecommendedthattheheat-transfercorrelationsbebasedonthehydraulicdiameter.VariousSectionsDefinitionHydraulicdiameterAiscross-sectionalareaoftheflowPisthewettedperimeterChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology29ThehydraulicdiametershouldbeusedincalculatingtheNusseltandReynoldsnumbers,andinestablishingthefrictioncoefficientforusewithReynoldsanalogy.AverageNusseltnumberforuniformheatfluxinflowdirectionanduniformwalltemperatureatparticularflowcrosssectionAverageNusseltnumberforuniformwalltemperatureProductoffrictionfactorandReynoldsnumberbasedonhydraulicdiameterChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology30ConstantaxialwallheatfluxConstantaxialwalltemperatureHeattransferandfluidfrictionforfullydevelopedflowinductsofvariouscrosssectionsGeometryTriangleSquareRegularHexagonCircleRectanglewithb=2aChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology31Airat2atmand200℃isheatedasitflowsthroughatubewithadiameterof1in(2.54cm)atvelocityof10m/s.Calculatetheheattransferperunitlengthoftubeisconstant-heat-fluxconditionismaintainedatthewallandthewallandthewalltemperatureis20℃,abovetheairtemperature,allalongthelengthofthetube.Howmuchwouldthebulktemperatureincreasea3-mlengthofthetube?ExampleChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology32SolutionWefirstcalculatetheReynoldsnumbertodetermineiftheflowislaminarorturbulent,andthenselecttheappropriateempiricalcorrelationtocalculatetheheattransfer.Thepropertiesofairatabulktemperatureof200℃areChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology33Sotheflowisturbulent.WethereforeuseEquation(6-4a)tocalculatetheheat-transfercoefficientChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology34Theheat-flowperunitlengthisthenChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology35Wecannowmakeanenergybalancetocalculatetheincreaseinbulktemperatureina3.0-mlengthofthetubeChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology36SotheheattransferperunitlengthisChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology376-3FlowAcrossCylindersAndSpheresBoundary-layerSeparationLookatFigure6-7,itisnecessarytoincludethepressuregradientintheanalysisbecausethisinfluencestheboundary-layervelocityandcausesseparatedflowregiontodeveloponthebacksideofthecylinderwhenthefreestreamvelocityissufficientlylarge.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology38Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology39Figure6—8VelocitydistributionsindicatingflowseparationonacylinderincrossflowBoundaryLayerSeparationRegionChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology40Incaseofcylinder,onemightmeasurexdistancefromthefrontstagnationpointofthecylinder.Thusthepressureintheboundarylayershouldfollowthatofthefreestreamforpotentialflowaroundacylinder,providedthisbehaviorwouldnotcontradictsomebasicprinciple.Astheincreaseflowprogressesalongthefrontsideofthecylinder,thepressurewoulddecreaseandthenincreasealongthebacksideofthecylinder,resultinginanincreaseinfree-streamvelocityonthefrontsideofthecylinderandadecreaseonthebackside.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology41ThedetailedbehavioroftheheattransferfromaheatedcylindertoairaresummarizedinFigure6-11Thechangeofheat-transfercoefficientthroughcircularCylindersChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology42AtthelowerRenumbers,aminimumpointintheheat-transfercoefficientoccursatapproximatelythepointofseparation.Thereisasubsequentincreaseintheheat-transfercoefficientontherearsideofthecylinder,resultingfromtheturbulenteddymotionintheseparatedflow.AthigherRenumbers,
twominimumpointsareobservedChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology43Becauseofthecomplicatednatureoftheflow-separation,itisnotpossibletocalculateanalyticallytheaveragecoefficientsincrossflow.KnudsenandKatzsuggestedthatthecorrelationbeextendedtoliquidsbyinclusionofTheresultingcorrelationforaverageheat-transfercoefficientsincrossflowovercircularcylindersisTherelationshipofFlowAcrossCylinders[6-17]Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology44TheconstantCandnaretabulatedintheTable6-2ReCn0.4~40.9890.3304~400.9110.38540~40000.6830.4664000~400000.1930.61840000~4000000.02660.805℃,℃
BulktemperatureChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology45StillamorecomprehensiverelationisgivenbyChurchillandBernsteinwhichisapplicableoverthecompleterangeofavailabledata.ForBulktemperatureChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology46NoncircularCylindersEquation[6-17]isemployedinordertoobtainanempiricalcorrelationforgases,andtheconstantsforusewiththisequationaresummarizedinTable6-3.ThedatauponwhichTable6-3isbasedwereforgaseswithPr~0.7andweremodifiedbysame1.11factoremployedfortheinformationpresentedinTable6-2Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology47Table6-3constantsforheattransferfromnoncircularcylindersforusewithEquation(6-17)FlatSquareRegularHexagonChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology48SpheresAsingleEquationforgasesandliquidsflowingpastspheresAtfree-streamtemperatureChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology49ExampleAirat1atmand35℃flowsacrossa5.0-cm-diametercylinderatavelocityof50m/s.Thecylindersurfaceismaintainedatatemperatureof150℃.CalculatetheheatlossperunitlengthofthecylinderChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology50SolutionWefirstdeterminetheRenumberandthenfindtheapplicableconstantsfromTable6-2forusewithEquation(6-17).Thepropertiesofairareevaluatedatthefilmlengthofcylinder.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology51FromTable6-2,wehaveChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology526-4FlowAcrossTubeBanksDifferentArrangementofBanksUsually,therearetwokindsofarrangementofbanks,theyareInline&StaggeredFigure6-14In-lineStaggeredChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology53ForStaggeredtubebanks,theyhavebetterheat-transferperformance,buthardtocleanandhavemoreresistanceloss.[6-17]Onthebasisofacorrelationoftheresultsofvariousinvestigators,GrimsonwasabletorepresentdatainformofEquation6-17Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology54NumberoftheRows>10TheRenumberisbasedonthemaximumvelocityoccurringinthetubebank,thatis,thevelocitythroughtheminimum-flowarea.ThevalueofCandnarelistedinthefollowingtableChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology55In-lineStaggeredChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology56ZhukauskassuggestedagroupofformulawhichcouldbeusedforawiderangeofPrnumbersThebulktemperatureTheRenumbersarebasedonOutsidediameterofthetubeandonthevelocitythroughtheminimum-flowarea.RangeofPrnumberChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology57Fornumberoftubebanks<16rows,hesuggestedaratioεEquationsforheat-transferintubebanksof16rowsormore(IN-LINEarrangement)EquationsRangeofRenumberChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology58Equationsforheat-transferintubebanksof16rowsormore(Staggeredarrangement)Raitofortubebanks<16rowsEquationsRangeofReNumberNumberofRowsIn-lineStaggeredChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology596-5Liquid-MetalHeatTransferLet’sfirstconsiderthesimpleflatplatewithaliquidmetalflowingacrossit.ThePrandtlnumberforliquidmetalsisverylow,oftheorderof0.01,sothatthethermal–boundary-layerthicknessshouldbesubstantiallylargerthanthehydrodynamic-boundarylayerthickness.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology60ThissituationresultsfromthehighvaluesofthermalconductivityforconductivityforliquidmetalsandisdepictedinFigure6-15.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology61Sincetheratioofissmall,thevelocityprofilehasaverybluntshapeovermostofthethermalboundarylayer.Asafirstapproximation,then,wemightassumeaslug-flowmodelforcalculationoftheheattransfer;thatis,wetakeThroughoutthethermalboundarylayerforpurposesofcomputingtheenergy-transporttermintheintegralenergyequationChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology62Theconditionsonthetemperatureprofilearethesameasthoseinsection5-6,sothatweusethecubicparabolaasbefore:Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology63InsertingEquationsgivesThatmaybeintegratedtogiveChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology64ThesolutiontothisdifferentialequationsisForaplateheatedoveritsentirelength.Theheat-transfercoefficientmaybeexpressedbyChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology65ItmaybeputindimensionlessformasUsingEquation(5-21)forthehydrodynamic-boundary-layerthickness,Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology66WemaycomputetheratioUsingPr~0.01,weobtainItisthereasonableagreementwithourslug-flowmodel.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology67Itisimportanttonotethattheheat-transferisdependentonthePecletnumber.Empiricalcorrelationsareusuallyexpressedintermsofparameter,fourofwhichwepresentbelow.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology68ConditionsInFullydevelopedturbulentflowofliquidmetalsInsmoothtubesWithuniformheatfluxatwallPropertiesareevaluatedatbulktemperatureValidforChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology69ConditionsIntubeswithconstantwalltemperatureAllpropertiesareevaluatedatbulktemperatureConditionsConstant-heat-fluxconditionValidforChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology70TheheattransferfromaspheretoliquidsodiumForcedconvectionValidforConditionsChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology716-5SummaryEstablishthegeometryofthesituationMakeapreliminarydeterminationofappropriatefluidpropertiesEstablishtheflowregimebycalculatingtheReynoldsorPecletnumberSelectanequationthatfitsthegeometryandflowregimeandreevaluateproperties,ifnecessary,inaccordancewithstipulationsandtheequation.Processtocalculatethevalueofheat-transferrateChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnologyEmpiricalandPracticalRelationsforForced-ConvectionHeatTransfer
72Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology736-1Introduction
ThediscussionandanalysesofChapter5haveshownhowforced-convectionheattransfermaybecalculatedforseveralcasesofpracticalinterest;however,theproblemsconsideredwerethosethatcouldsolvedinananalyticalfashion.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology74But,itisnotalwayspossibletoobtainanalyticalsolutionstoconvectionproblems,andtheindividualisforcedtoresorttoexperimentalmethodstoobtaindesigninformation,aswellastosecurethemoreelusivedatethatincreasethephysicalunderstandingoftheprocess.Whatwehavetodo:Generalizetheresultsofone’sexperimentsinformofsomeempiricalcorrelationChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology75DifficultiesWhichvariablesshouldwemeasure?Whatfunctionalformshouldthedatabeorganizedinto?It’shardandexpensivetodotheexperiments,so,howmanyexperimentsshouldwedo?Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology76SimilarityConsiderationsPurpose:todoresearchontherelationshipbetweensimilarphysicalphenomena.Forsimilarphysicalphenomena:atcorrespondingtimewithcorrespondinglocationonthephysicalquantityrelatedwiththephenomenoncorrespondenceproportional.Forsametypeofphenomena:Phenomenondescribedbydifferentialequationswiththesameformandcontent.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology77CharacteristicsforphysicalphenomenasimilarityThesamecharacteristicnumbersareequalThereissomewhatrelationshipbetweendifferentcharacteristics.ForexampleChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology78TheconditionsforphysicalphenomenasimilaritySameidentifiedcharacteristicnumbersareequalIt’ssimilarforMonodromyconditions,whichincludesinitialconditions,boundaryconditionsandGeometricconditionsChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology79HowtogetdimensionlessgroupsSimilarityConsiderations:Toestablishthecolumnproportioncoefficientbetweenthetwophenomena,relationshipbetweentheexportofthesesimilaritycoefficientandobtainadimensionlessquantitybasedonKnownmathematicaldescriptionofthephysicalphenomena.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology80Phenomenon1:Phenomenon2:mathematicaldescriptionChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology81EstablishsimilarmultiplesRelationshipbetweenthemChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology82BerkeleynumberToobtaindimensionlessgroups
Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology83DimensionalAnalysisIndimensionalanalysis,dimensionalgroupssuchastheReynoldsandPrandtlnumbersarederivedfrompurelydimensionalandfunctionalconsiderations.FundamentalBasisTheoremof,Aconsistentdimensionlessequationshowingtherelationshipbetweenthenphysicalquantitiescouldbetransferredtoarelationshipwhichcontains(n-r)independentdimensionlessgroups.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology84AdvantagesofdimensionlessanalysisSimpleWecanstillobtaindimensionlessgroupswithoutknowingtheDifferentialEquationsFundamentalquantityintheSIUnitsLength[m],MASS[kg],time[s],ELECTRICCURRENT[A],thermodynamictemperature[K],amountofsubstance[mol],luminousintensity[cd]Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology85NowwecomebacktothedifficultiesWhichvariablesshouldwemeasure?
OnlyvariablesthatarecontainedincharacteristicnumbersWhatfunctionalformshouldthedatabeorganizedinto?
ArrangethedataaccordingtotherelationshipbetweenthecharacteristicnumbersIt’shardandexpensivetodotheexperiments,so,howmanyexperimentsshouldwedo?
ModularExperimentsundertheguidanceofthesimilarconsiderationChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology86Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology876-2EmpiricalRelationsForPipeAndTubeFlowCasesofUndevelopedFlowThecasesofundevelopedlaminarflowsystemswherethefluidpropertiesvarywidelywithtemperature,andturbulent-flowsystemsareconsiderablymorecomplicatedbutareofveryimportantpracticalinterestinheatexchangersandassociatedheat-transferequipment.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology88Fordesignandengineeringpurposes,empiricalcorrelationsareusuallyofgreatestpracticalutility.Forlaminarflow,thelengthoftheundevelopedpartundevelopeddeveloped(Averagefrom0tox)Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology89Forturbulentflow,thelengthoftheundevelopedpartundevelopeddeveloped(Averagefrom0tox)Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology90FurtherconsiderationtoBulktemperatureChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology91FortubeinFigure6-1thetotalenergyaddedcanbeexpressedintermsofbulk-temperaturebyIndifferentialequation,TheTwandTbherearethewallandbulktemperatureattheparticularxlocation.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology92Thetotalheattransfercanalsobeexpressedas[6-3]whereAisthetotalsurfaceareaforheattransfer.BecausebothTwandTbcanvaryalongthelengthofthetube,asuitableaveragingprocessmustbeadoptedforusewithEquation(6-3).Inchapter10we’lldiscussdifferentmethodsfortakingproperaccountoftemperaturevariationsinheatexchangers.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology93AtraditionexpressionforcalculationofheattransferinfullydevelopedturbulentflowinsmoothtubesForheatingofthefluidForcoolingofthefluidChapter6CollegeofNuclear
Cha
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國餐飲設(shè)備市場發(fā)展趨勢規(guī)劃研究報(bào)告
- 2025-2030年中國鋼制車輪行業(yè)發(fā)展現(xiàn)狀及前景趨勢分析報(bào)告
- 2025-2030年中國采暖散熱器行業(yè)十三五規(guī)劃及發(fā)展前景分析報(bào)告
- 2025-2030年中國通信繼電器市場供需狀況及投資戰(zhàn)略研究報(bào)告
- 2025-2030年中國船舶涂料產(chǎn)業(yè)運(yùn)營狀況與發(fā)展趨勢分析報(bào)告
- 2025-2030年中國臭氧治療儀市場需求狀況及發(fā)展?jié)摿Ψ治鰣?bào)告
- 2025-2030年中國聚酯多元醇行業(yè)市場現(xiàn)狀分析規(guī)劃研究報(bào)告
- 2025-2030年中國網(wǎng)絡(luò)借貸市場發(fā)展現(xiàn)狀及前景趨勢分析報(bào)告
- 2025-2030年中國精制棉市場運(yùn)營現(xiàn)狀及投資前景規(guī)劃研究報(bào)告
- 2025-2030年中國眼視光行業(yè)發(fā)展趨勢規(guī)劃研究報(bào)告
- 【古鎮(zhèn)旅游發(fā)展研究國內(nèi)外文獻(xiàn)綜述3200字】
- SolidWorks全套入門教程
- 企業(yè)財(cái)務(wù)會計(jì)(第二版)高職PPT完整全套教學(xué)課件
- 3dsMax20223維動畫制作標(biāo)準(zhǔn)教程PPT完整版全套教學(xué)課件
- NXT上的PoP貼裝課件
- 2023-2024蘇教版小學(xué)數(shù)學(xué)5五年級下冊(全冊)教案設(shè)計(jì)
- 批評他人發(fā)言稿(通用12篇)
- 上海實(shí)驗(yàn)學(xué)校幼升小測試題資料
- 一年級美術(shù)課后服務(wù)教案-1
- 重大疾病保險(xiǎn)的疾病定義使用規(guī)范(2020年修訂版)-
- RB/T 040-2020病原微生物實(shí)驗(yàn)室生物安全風(fēng)險(xiǎn)管理指南
評論
0/150
提交評論