




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.等邊三角形 B.平行四邊形 C.正五邊形 D.圓2.如圖所示的幾何體是由4個大小相同的小立方塊搭成,它的俯視圖是()A. B. C. D.3.如圖,在△ABC中,∠ACB=90°,AC=3,BC=1.將△ABC繞點A逆時針旋轉,使點C的對應點C'在線段AB上.點B'是點B的對應點,連接B'B,則線段B'B的長為()A.2 B.3 C.1 D.4.為了盡早適應中考體育項目,小麗同學加強跳繩訓練,并把某周的練習情況做了如下記錄:周一個,周二個,周三個,周四個,周五個則小麗這周跳繩個數(shù)的中位數(shù)和眾數(shù)分別是A.180個,160個 B.170個,160個C.170個,180個 D.160個,200個5.下列關系式中,y是x的反比例函數(shù)的是()A.y=4x B.=3 C.y=﹣ D.y=x2﹣16.已知現(xiàn)有的10瓶飲料中有2瓶已過了保質期,從這10瓶飲料中任取1瓶,恰好取到已過了保質期的飲料的概率是()A. B. C. D.7.如圖,是由兩個正方體組成的幾何體,則該幾何體的俯視圖為()A. B. C. D.8.如圖所示的圖案是按一定規(guī)律排列的,照此規(guī)律,在第1至第2018個圖案中“?”共有()個.A.504 B.505 C.506 D.5079.如圖,拋物線與軸交于點,頂點坐標為,與軸的交點在、之間(包含端點).有下列結論:①當時,;②;③;④.其中正確的有()A.1個 B.2個 C.3個 D.4個10.如圖,某物體由上下兩個圓錐組成,其軸截面中,,.若下部圓錐的側面積為1,則上部圓錐的側面積為()A. B. C. D.二、填空題(每小題3分,共24分)11.鉛球行進高度y(m)與水平距離x(m)之間的關系為y=﹣x2+x+,鉛球推出后最大高度是_____m,鉛球落地時的水平距離是______m.12.山西拉面,又叫甩面、扯面、抻面,是西北城鄉(xiāng)獨具地方風味的面食名吃,為山西四大面食之一.將一定體積的面團做成拉面,面條的總長度與粗細(橫截面面積)之間的變化關系如圖所示(雙曲線的一支).如果將這個面團做成粗為的拉面,則做出來的面條的長度為__________.13.把所有正整數(shù)從小到大排列,并按如下規(guī)律分組:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若An=(a,b)表示正整數(shù)n為第a組第b個數(shù)(從左往右數(shù)),如A7=(4,1),則A20=______________.14.如圖,點A在函數(shù)y=(x>0)的圖像上,點B在x軸正半軸上,△OAB是邊長為2的等邊三角形,則k的值為______.15.如圖,在中,,點是邊的中點,,則的值為___________.16.已知關于x方程x2﹣3x+a=0有一個根為1,則方程的另一個根為_____.17.如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把△CDB旋轉90°,則旋轉后點D的對應點D′的坐標是___________.18.如圖,∠XOY=45°,一把直角三角尺△ABC的兩個頂點A、B分別在OX,OY上移動,其中AB=10,那么點O到頂點A的距離的最大值為_____.三、解答題(共66分)19.(10分)如圖,在中,,,垂足分別為,與相交于點.(1)求證:;(2)當時,求的長.20.(6分)(1)(x-5)2-9=0(2)x2+4x-2=021.(6分)有2部不同的電影A、B,甲、乙、丙3人分別從中任意選擇1部觀看.(1)求甲選擇A部電影的概率;(2)求甲、乙、丙3人選擇同一部電影的概率(請用畫樹狀圖的方法給出分析過程,并求出結果)22.(8分)如圖,內(nèi)接于,且為的直徑.的平分線交于點,過點作的切線交的延長線于點,過點作于點,過點作于點.(1)求證:;(2)試猜想線段,,之間有何數(shù)量關系,并加以證明;(3)若,,求線段的長.23.(8分)化簡求值:,其中.24.(8分)計算:25.(10分)如圖,是的直徑,軸,交于點.(1)若點,求點的坐標;(2)若為線段的中點,求證:直線是的切線.26.(10分)已知拋物線與軸交于兩點,與軸交于點.(1)求此拋物線的表達式及頂點的坐標;(2)若點是軸上方拋物線上的一個動點(與點不重合),過點作軸于點,交直線于點,連結.設點的橫坐標為.①試用含的代數(shù)式表示的長;②直線能否把分成面積之比為1:2的兩部分?若能,請求出點的坐標;若不能,請說明理由.(3)如圖2,若點也在此拋物線上,問在軸上是否存在點,使?若存在,請直接寫出點的坐標;若不存在,請說明理由.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.如果一個圖形繞某一點旋轉180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.【詳解】解:A、等邊三角形是軸對稱圖形,不是中心對稱圖形,故A錯誤;B、平行四邊形不是軸對稱圖形,是中心對稱圖形,故B錯誤;C、正五邊形是軸對稱圖形,不是中心對稱圖形,故C錯誤;D、圓是軸對稱圖形,也是中心對稱圖形,故D正確.故選:D.【點睛】此題主要考查了中心對稱圖形與軸對稱的定義,根據(jù)定義得出圖形形狀是解決問題的關鍵.2、C【解析】從上面可得:第一列有兩個方形,第二列只有一個方形,只有C符合.
故選C3、D【分析】先由勾股定理求出AB,然后由旋轉的性質,得到,,得到,即可求出.【詳解】解:在△ABC中,∠ACB=90°,AC=3,BC=1.∴,由旋轉的性質,得,,,∴,在中,由勾股定理,得;故選:D.【點睛】本題考查了旋轉的性質,勾股定理解直角三角形,解題的關鍵是熟練掌握旋轉的性質和勾股定理,正確求出邊的長度.4、B【解析】根據(jù)中位數(shù)和眾數(shù)的定義分別進行解答即可.【詳解】解:把這些數(shù)從小到大排列為160,160,170,180,200,最中間的數(shù)是170,則中位數(shù)是170;160出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是160;故選B.【點睛】此題考查了中位數(shù)和眾數(shù),掌握中位數(shù)和眾數(shù)的定義是解題的關鍵;中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù).5、C【分析】根據(jù)反比例函數(shù)的定義逐一判斷即可.【詳解】A、y=4x是正比例函數(shù);B、=3,可以化為y=3x,是正比例函數(shù);C、y=﹣是反比例函數(shù);D、y=x2﹣1是二次函數(shù);故選:C.【點睛】本題考查反比例函數(shù)的定義,掌握反比例函數(shù)的定義是解題的關鍵.6、C【分析】直接利用概率公式求解.【詳解】∵10瓶飲料中有2瓶已過了保質期,∴從這10瓶飲料中任取1瓶,恰好取到已過了保質期的飲料的概率是.故選C.【點睛】本題考查了概率公式:隨機事件A的概率P(A)=事件A可能出現(xiàn)的結果數(shù)除以所有可能出現(xiàn)的結果數(shù).7、D【分析】根據(jù)俯視圖是從上面看得到的圖形進行求解即可.【詳解】俯視圖為從上往下看,所以小正方形應在大正方形的右上角,故選D.【點睛】本題考查了簡單組合體的三視圖,熟知俯視圖是從上方看得到的圖形是解題的關鍵.8、B【分析】根據(jù)題意可知所示的圖案每四個為一組,交替出現(xiàn),從而可以計算出在第1至第2018個圖案中“?”共有多少個,進行分析即可求解.【詳解】解:由圖可知,所示的圖案每四個為一組,交替出現(xiàn),∵2018÷4=504…2,∴在第1至第2018個圖案中“?”共有504+1=505(個).故選:B.【點睛】本題考查圖形的變化類,解答本題的關鍵是明確題意以及發(fā)現(xiàn)題目中圖形的變化規(guī)律并利用數(shù)形結合的思想進行分析解答.9、C【分析】①由拋物線的頂點坐標的橫坐標可得出拋物線的對稱軸為x=1,結合拋物線的對稱性及點A的坐標,可得出點B的坐標,由點B的坐標即可斷定①正確;②由拋物線的開口向下可得出a<1,結合拋物線對稱軸為x=-=1,可得出b=-2a,將b=-2a代入2a+b中,結合a<1即可得出②不正確;③由拋物線與y軸的交點的范圍可得出c的取值范圍,將(-1,1)代入拋物線解析式中,再結合b=-2a即可得出a的取值范圍,從而斷定③正確;④結合拋物線的頂點坐標的縱坐標為,結合a的取值范圍以及c的取值范圍即可得出n的范圍,從而斷定④正確.綜上所述,即可得出結論.【詳解】解:①由拋物線的對稱性可知:
拋物線與x軸的另一交點橫坐標為1×2-(-1)=2,
即點B的坐標為(2,1),
∴當x=2時,y=1,①正確;
②∵拋物線開口向下,
∴a<1.
∵拋物線的頂點坐標為(1,n),
∴拋物線的對稱軸為x=-=1,
∴b=-2a,
2a+b=a<1,②不正確;
③∵拋物線與y軸的交點在(1,2)、(1,2)之間(包含端點),
∴2≤c≤2.
令x=-1,則有a-b+c=1,
又∵b=-2a,
∴2a=-c,即-2≤2a≤-2,
解得:-1≤a≤-,③正確;
④∵拋物線的頂點坐標為,∴n==c-,又∵b=-2a,2≤c≤2,-1≤a≤-,
∴n=c-a,≤n≤4,④正確.
綜上可知:正確的結論為①③④.
故選C.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系,解決該題型題目時,利用二次函數(shù)的系數(shù)表示出來拋物線的頂點坐標是關鍵.10、C【分析】先證明△ABD為等邊三角形,得到AB=AD=BD,∠A=∠ABD=∠ADB=60°,由求出∠CBD=∠CDB=30°,從而求出BC和BD的比值,利用圓錐的側面積的計算方法得到上面圓錐的側面積與下面圓錐的側面積的比等于AB:CB,從而得到上部圓錐的側面積.【詳解】解:∵∠A=60°,AB=AD,
∴△ABD為等邊三角形,
∴AB=AD=BD,∠A=∠ABD=∠ADB=60°,∵∠ABC=90°,
∴∠CBD=30°,而CB=CD,
∴△CBD為底角為30°的等腰三角形,過點C作CE⊥BD于點E,易得BD=2BE,∵∠CBD=30°,∴BE:BC=:2,∴BD:BC=:2=:1,即AB:BC=:1,∵上面圓錐與下面圓錐的底面相同,
∴上面圓錐的側面積與下面圓錐的側面積的比等于AB:CB,
∴下面圓錐的側面積=.
故選:C.【點睛】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.也考查了等腰直角三角形和等邊三角形的性質.二、填空題(每小題3分,共24分)11、310【分析】利用配方法將函數(shù)解析式轉化為頂點式,利用二次函數(shù)的性質,可求得鉛球行進的最大高度;鉛球推出后落地時,高度y=0,把實際問題可理解為當y=0時,求得x的值就是鉛球落地時的水平距離.【詳解】∵y=﹣x2+x+,∴y=﹣(x﹣4)2+3因為﹣<0所以當x=4時,y有最大值為3.所以鉛球推出后最大高度是3m.令y=0,即0=﹣(x﹣4)2+3解得x1=10,x2=﹣2(舍去)所以鉛球落地時的水平距離是10m.故答案為3、10.【點睛】此題考查了函數(shù)式中自變量與函數(shù)表達的實際意義,需要結合題意,取函數(shù)或自變量的特殊值列方程求解.正確解答本題的關鍵是掌握二次函數(shù)的性質.12、1【分析】因為面條的總長度y(cm)是面條粗細(橫截面面積)x(cm2)反比例函數(shù),且從圖象上可看出過(0.05,3200),從而可確定函數(shù)式,再把x=0.16代入求出答案.【詳解】解:根據(jù)題意得:y=,過(0.04,3200).
k=xy=0.04×3200=128,
∴y=(x>0),
當x=0.16時,
y==1(cm),
故答案為:1.【點睛】此題參考反比例函的應用,解題的關鍵是確定兩個變量之間的函數(shù)關系,然后利用待定系數(shù)法求出它們的關系式.13、(6,5)【分析】通過新數(shù)組確定正整數(shù)n的位置,An=(a,b)表示正整數(shù)n為第a組第b個數(shù)(從左往右數(shù)),所有正整數(shù)從小到大排列第n個正整數(shù),第一組(1),1個正整數(shù),第二組(2,3)2個正整數(shù),第三組(4,5,6)三個正整數(shù),…,這樣1+2+3+4+…+a>n,而1+2+3+4+…+(a-1)<n,能確第a組a個數(shù)從哪一個是開起,直到第b個數(shù)(從左往右數(shù))表示正整數(shù)nA7表示正整數(shù)7按規(guī)律排1+2+3+4=10>7,1+2+3=6<7,說明7在第4組,第四組應有4個數(shù)為(7,8,9,10)而7是這組的第一個數(shù),為此P7=(4,1),理解規(guī)律A20,先求第幾組排進20,1+2+3+4+5+6=21>20,由1+2+3+4+5=15,第六組從16開始,按順序找即可.【詳解】A20是指正整數(shù)20的排序,按規(guī)律1+2+3+4+5+6=21>20,說明20在第六組,而1+2+3+4+5=15<20,第六組從16開始,取6個數(shù)即第六組數(shù)(16,17,18,19,20,21),從左數(shù)第5個數(shù)是20,故A20=(6,5).故答案為:(6,5).【點睛】本題考查按規(guī)律取數(shù)問題,關鍵是讀懂An=(a,b)的含義,會用新數(shù)組來確定正整數(shù)n的位置.14、【分析】首先過點A作AC⊥OB,根據(jù)等邊三角形的性質得出點A的坐標,從而得出k的值.【詳解】分析:解:過點A作AC⊥OB,∵△OAB為正三角形,邊長為2,∴OC=1,AC=,∴k=1×=.故答案為:【點睛】本題主要考查的是待定系數(shù)法求反比例函數(shù)解析式以及等邊三角形的性質,屬于基礎題型.得出點A的坐標是解題的關鍵.15、【分析】作高線DE,利用勾股定理求出AD,AB的值,然后證明,求DE的長,再利用三角函數(shù)定義求解即可.【詳解】過點D作于E∵點是邊的中點,∴,在中,由∴∴由勾股定理得∵∴∵∴∴∴∴∴故答案為:.【點睛】本題考查了三角函數(shù)的問題,掌握勾股定理和銳角三角函數(shù)的定義是解題的關鍵.16、1【解析】分析:設方程的另一個根為m,根據(jù)兩根之和等于-,即可得出關于m的一元一次方程,解之即可得出結論.詳解:設方程的另一個根為m,根據(jù)題意得:1+m=3,解得:m=1.故答案為1.點睛:本題考查了根與系數(shù)的關系,牢記兩根之和等于-是解題的關鍵.17、(2,10)或(﹣2,0)【解析】∵點D(5,3)在邊AB上,∴BC=5,BD=5﹣3=2,①若順時針旋轉,則點D′在x軸上,OD′=2,所以,D′(﹣2,0),②若逆時針旋轉,則點D′到x軸的距離為10,到y(tǒng)軸的距離為2,所以,D′(2,10),綜上所述,點D′的坐標為(2,10)或(﹣2,0).18、10【分析】當∠ABO=90°時,點O到頂點A的距離的最大,則△ABC是等腰直角三角形,據(jù)此即可求解.【詳解】解:∵∴當∠ABO=90°時,點O到頂點A的距離最大.
則OA=AB=10.
故答案是:10.【點睛】本題主要考查了等腰直角三角形的性質,正確確定點O到頂點A的距離的最大的條件是解題關鍵.三、解答題(共66分)19、(1)證明見解析;(2).【分析】(1)只要證明∠DBF=∠DAC,即可判斷.
(2)利用相似三角形的性質即可解決問題.【詳解】(1),,,,,;(2)由,可得,,,.【點睛】本題考查了銳角三角函數(shù)的應用,相似三角形的性質和判定,同角的余角相等,直角三角形兩銳角互余等知識,解題的關鍵是正確尋找相似三角形,利用相似三角形的性質解決問題.20、(1)x=8或x=1;(1)x=-1或x=--1【分析】(1)先移項,利用直接開平方法解方程;
(1)利用配方法解方程即可求解.【詳解】解:(1)(x-5)1-9=0(x-5)1=9∴x-5=3或x-5=-3∴x=8或x=1;(1)x1+4x-1=0(x1+4x+4)-6=0(x+1)1=6∴x+1=或x+1=-∴x=-1或x=--1.【點睛】本題考查一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據(jù)方程的特點靈活選用合適的方法.21、(1)甲選擇A部電影的概率為;(2)甲、乙、丙3人選擇同一部電影的概率為.【解析】(1)甲可選擇電影A或B,根據(jù)概率公式即可得甲選擇A部電影的概率.(2)用樹狀圖表示甲、乙、丙3人選擇電影的所有情況,由圖可知總共有8種情況,甲、乙、丙3人選擇同一部電影的情況有2種,根據(jù)概率公式即可得出答案.【詳解】(1)∵甲可選擇電影A或B,∴甲選擇A部電影的概率P=,答:甲選擇A部電影的概率為;(2)甲、乙、丙3人選擇電影情況如圖:由圖可知總共有8種情況,甲、乙、丙3人選擇同一部電影的情況有2種,∴甲、乙、丙3人選擇同一部電影的概率P=,答:甲、乙、丙3人選擇同一部電影的概率為.【點睛】本題考查了列表法或樹狀圖法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.22、(1)見解析;(2),證明見解析;(3)【分析】(1)連結OD,先由已知△ABD是等腰直角三角形,得DO⊥AB,再根據(jù)切線的性質得OD⊥PD,于是可得到DP∥AB;(2)由“一線三垂直模型”易得,進而可得.(3)利用勾股定理依次可求直徑AB=10,,,得,再證明可得,,進而由求得PD即可.【詳解】(1)證明:連結,如圖,∵為的直徑,∴,∵的平分線交于點,∴,∴,∴為等腰直角三角形,∴,∵為的切線,∴,∴;(2)答:,證明如下:∵是的直徑,∴,∵,,∴,∴,∴,∵,∴,在和中,∴,∴,,∴,即.(3)解:在中,,∵為等腰直角三角形,∴∵,∴為等腰直角三角形,∴,在中,,∴,∵,,∴,∴,∴,,而,∴,∴.【點睛】本題考查了切線的性質:圓的切線垂直于過切點的半徑.也考查了圓周角定理定理、等腰直角三角形的性質和三角形相似的判定與性質.解題關鍵是抓住45°角得等腰直角三角形進行解答.23、,1【分析】原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結果,將的值代入計算即可求出值.【詳解】;當時,原式.【點睛】本題主要考查分式的化簡求值,解題的關鍵是掌握分式混合運算順序和運算法則.24、(1);(2).【分析】(1)根據(jù)二次根式混合運算法則計算即可;(2)根據(jù)有理數(shù)的乘方、零指數(shù)冪、特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪、二次根式的化簡計算即可.【詳解】(1)原式;(2)原式.【點睛】本題考查了二次根式的混合運算、特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪以及零指數(shù)冪,熟練掌握運算法則是解答本題的關鍵.25、(1);(2)見解析.【分析】(1)由A、N兩點坐標可求AN的長,利用,,由勾股定理求BN即可,(2)連接MC,NC,由是的直徑,可得,D為線段的中點,由直角三角形斜邊中線CD的性質得ND=CD,由此得,由半徑知,利用等式的性質得∠MCD=∠MND=90o,可證直線是的切線.【詳解】的坐標為,,,,由勾股定理可知:,;連接MC,NC,是的直徑,,,為線段的中點,,,,,,,即,直線是的切線.【點睛】本題考查點的坐標與切線問題,掌握用兩點坐標求線段的長,能在直角三角形中,利用30o角求線段,會利用勾股定理解決問題,會利用半徑證角等,利用直角三角形的斜邊中線解決角等與線段相等問題,利用等式的性質證直角等知識.26、(1),頂點坐標為:;(2)①;②能,理由見解析,點的坐標為;(3)存在,點Q的坐標為:或.【分析】(1)根據(jù)待定系數(shù)法即可求出拋物線的解析式,然后把一般式轉化為頂點式即可得出拋
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 深入理解備考要素福建事業(yè)單位考試試題及答案
- 2025年國際金融理財師考試心態(tài)調(diào)整試題及答案
- 2024年掌握項目執(zhí)行與控制試題及答案
- 項目溝通渠道的試題及答案
- 2024年微生物學原理及應用試題及答案
- 招聘輔導員考試中的學科知識與實踐結合探討試題及答案
- 常用花材運用技巧的試題及答案
- 臨床微生物檢驗的流程與注意事項試題及答案
- 探討微生物檢驗實踐中的挑戰(zhàn)與試題及答案
- 客運站環(huán)境保護考核試卷
- 2025年03月四川成都農(nóng)業(yè)科技中心公開招聘筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 全過程工程咨詢投標方案(技術方案)
- GB/T 4802.2-2008紡織品織物起毛起球性能的測定第2部分:改型馬丁代爾法
- GB 14934-2016食品安全國家標準消毒餐(飲)具
- 輔警考試試題
- 蘇科版三年級上冊勞動第一課《包書皮》課件(定稿)
- 框架結構柱、梁板模板安裝技術交底
- 二年級數(shù)學期中測試卷(含答案)
- 簡約紅色五四青年節(jié)活動策劃PPT模板
- 年產(chǎn)萬噸丙烯酸工藝設計
- 復擺式顎式破碎機結構設計畢業(yè)設計
評論
0/150
提交評論