版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,,則()A. B. C. D.2.1777年,法國科學家蒲豐在宴請客人時,在地上鋪了一張白紙,上面畫著一條條等距離的平行線,而他給每個客人發(fā)許多等質量的,長度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對針落地的位置進行統(tǒng)計,發(fā)現共投針2212枚,與直線相交的有704枚.根據這次統(tǒng)計數據,若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為()A. B. C. D.3.某幾何體的三視圖如圖所示,其俯視圖是由一個半圓與其直徑組成的圖形,則此幾何體的體積是()A. B. C. D.4.已知是虛數單位,則復數()A. B. C.2 D.5.已知函數滿足=1,則等于()A.- B. C.- D.6.已知,,,則a,b,c的大小關系為()A. B. C. D.7.某中學有高中生人,初中生人為了解該校學生自主鍛煉的時間,采用分層抽樣的方法從高生和初中生中抽取一個容量為的樣本.若樣本中高中生恰有人,則的值為()A. B. C. D.8.已知函數在上單調遞增,則的取值范圍()A. B. C. D.9.以,為直徑的圓的方程是A. B.C. D.10.已知函數,,若成立,則的最小值為()A.0 B.4 C. D.11.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.12.若向量,,則與共線的向量可以是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,,則___________.14.如圖所示,直角坐標系中網格小正方形的邊長為1,若向量、、滿足,則實數的值為_______.15.已知非零向量的夾角為,且,則______.16.已知拋物線的焦點為,其準線與坐標軸交于點,過的直線與拋物線交于兩點,若,則直線的斜率________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)數列滿足,是與的等差中項.(1)證明:數列為等比數列,并求數列的通項公式;(2)求數列的前項和.18.(12分)的內角,,的對邊分別是,,,已知.(1)求角;(2)若,,求的面積.19.(12分)已知數列和滿足:.(1)求證:數列為等比數列;(2)求數列的前項和.20.(12分)如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點.證明:;設,點M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.21.(12分)已知x∈R,設,,記函數.(1)求函數取最小值時x的取值范圍;(2)設△ABC的角A,B,C所對的邊分別為a,b,c,若,,求△ABC的面積S的最大值.22.(10分)如圖,在中,角的對邊分別為,且滿足,線段的中點為.(Ⅰ)求角的大小;(Ⅱ)已知,求的大小.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【答案解析】
先根據得到為的重心,從而,故可得,利用可得,故可計算的值.【題目詳解】因為所以為的重心,所以,所以,所以,因為,所以,故選A.【答案點睛】對于,一般地,如果為的重心,那么,反之,如果為平面上一點,且滿足,那么為的重心.2.D【答案解析】
根據統(tǒng)計數據,求出頻率,用以估計概率.【題目詳解】.故選:D.【答案點睛】本題以數學文化為背景,考查利用頻率估計概率,屬于基礎題.3.C【答案解析】由三視圖可知,該幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高為2的圓錐的一半,所以,半圓柱的體積為,上部半圓錐的體積為,所以該幾何體的體積為,故應選.4.A【答案解析】
根據復數的基本運算求解即可.【題目詳解】.故選:A【答案點睛】本題主要考查了復數的基本運算,屬于基礎題.5.C【答案解析】
設的最小正周期為,可得,則,再根據得,又,則可求出,進而可得.【題目詳解】解:設的最小正周期為,因為,所以,所以,所以,又,所以當時,,,因為,整理得,因為,,,則所以.故選:C.【答案點睛】本題考查三角形函數的周期性和對稱性,考查學生分析能力和計算能力,是一道難度較大的題目.6.D【答案解析】
與中間值1比較,可用換底公式化為同底數對數,再比較大?。绢}目詳解】,,又,∴,即,∴.故選:D.【答案點睛】本題考查冪和對數的大小比較,解題時能化為同底的化為同底數冪比較,或化為同底數對數比較,若是不同類型的數,可借助中間值如0,1等比較.7.B【答案解析】
利用某一層樣本數等于某一層的總體個數乘以抽樣比計算即可.【題目詳解】由題意,,解得.故選:B.【答案點睛】本題考查簡單隨機抽樣中的分層抽樣,某一層樣本數等于某一層的總體個數乘以抽樣比,本題是一道基礎題.8.B【答案解析】
由,可得,結合在上單調遞增,易得,即可求出的范圍.【題目詳解】由,可得,時,,而,又在上單調遞增,且,所以,則,即,故.故選:B.【答案點睛】本題考查了三角函數的單調性的應用,考查了學生的邏輯推理能力,屬于基礎題.9.A【答案解析】
設圓的標準方程,利用待定系數法一一求出,從而求出圓的方程.【題目詳解】設圓的標準方程為,由題意得圓心為,的中點,根據中點坐標公式可得,,又,所以圓的標準方程為:,化簡整理得,所以本題答案為A.【答案點睛】本題考查待定系數法求圓的方程,解題的關鍵是假設圓的標準方程,建立方程組,屬于基礎題.10.A【答案解析】
令,進而求得,再轉化為函數的最值問題即可求解.【題目詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【答案點睛】本題主要考查了導數在研究函數最值中的應用,考查了轉化的數學思想,恰當的用一個未知數來表示和是本題的關鍵,屬于中檔題.11.D【答案解析】
試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點:本題主要考查三視圖及幾何體體積的計算.12.B【答案解析】
先利用向量坐標運算求出向量,然后利用向量平行的條件判斷即可.【題目詳解】故選B【答案點睛】本題考查向量的坐標運算和向量平行的判定,屬于基礎題,在解題中要注意橫坐標與橫坐標對應,縱坐標與縱坐標對應,切不可錯位.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
因為,所以,又,所以,則,所以.14.【答案解析】
根據圖示分析出、、的坐標表示,然后根據坐標形式下向量的數量積為零計算出的取值.【題目詳解】由圖可知:,所以,又因為,所以,所以.故答案為:.【答案點睛】本題考查向量的坐標表示以及坐標形式下向量的數量積運算,難度較易.已知,若,則有.15.1【答案解析】
由已知條件得出,可得,解之可得答案.【題目詳解】向量的夾角為,且,,可得:,
可得,
解得,
故答案為:1.【答案點睛】本題考查根據向量的數量積運算求向量的模,關鍵在于將所求的向量的模平方,利用向量的數量積化簡求解即可,屬于基礎題.16.【答案解析】
求出拋物線焦點坐標,由,結合向量的坐標運算得,直線方程為,代入拋物線方程后應用韋達定理得,,從而可求得,得斜率.【題目詳解】由得,即聯(lián)立得解得或,∴.故答案為:.【答案點睛】本題考查直線與拋物線相交,考查向量的線性運算的坐標表示.直線方程與拋物線方程聯(lián)立后消元,應用韋達定理是解決直線與拋物線相交問題的常用方法.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析,(2)【答案解析】
(1)根據等差中項的定義得,然后構造新等比數列,寫出的通項即可求(2)根據(1)的結果,分組求和即可【題目詳解】解:(1)由已知可得,即,可化為,故數列是以為首項,2為公比的等比數列.即有,所以.(2)由(1)知,數列的通項為:,故.【答案點睛】考查等差中項的定義和分組求和的方法;中檔題.18.(1)(2)【答案解析】
(1)利用余弦定理可求,從而得到的值.(2)利用誘導公式和正弦定理化簡題設中的邊角關系可得,得到值后利用面積公式可求.【題目詳解】(1)由,得.所以由余弦定理,得.又因為,所以.(2)由,得.由正弦定理,得,因為,所以.又因,所以.所以的面積.【答案點睛】在解三角形中,如果題設條件是關于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設條件是關于邊的齊次式或是關于內角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設條件是邊和角的混合關系式,那么我們也可把這種關系式轉化為角的關系式或邊的關系式.19.(1)見解析(2)【答案解析】
(1)根據題目所給遞推關系式得到,由此證得數列為等比數列.(2)由(1)求得數列的通項公式,判斷出,由此利用裂項求和法求得數列的前項和.【題目詳解】(1)所以數列是以3為首項,以3為公比的等比數列.(2)由(1)知,∴為常數列,且,∴,∴∴【答案點睛】本小題主要考查根據遞推關系式證明等比數列,考查裂項求和法,屬于中檔題.20.(1)見解析;(2)【答案解析】
(1)由平面平面的性質定理得平面,.在中,由勾股定理得,平面,即可得;(2)以為坐標原點建立空間直角坐標系,由空間向量法和異面直線與所成角的余弦值為,得點M的坐標,從而求出二面角的余弦值.【題目詳解】(1)平面平面,平面平面=,,所以.由面面垂直的性質定理得平面,,在中,,,由正弦定理可得:,,即,平面,.(2)以為坐標原點建立如圖所示的空間直角坐標系,則,,,設,則,,得,,而,設平面的法向量為,由可得:,令,則,取平面的法向量,則,故二面角的余弦值為.【答案點睛】本題考查了線線垂直的證明,考查二面角的余弦值的求法,解題時要注意空間思維能力的培養(yǎng)和向量法的合理運用,屬于中檔題.21.(1);(2)【答案解析】
(1)先根據向量的數量積的運算,以及二倍角公式和兩角和的正弦公式化簡得到f(x)=,再根據正弦函數的性質即可求出答案;(2)先求出C的大小,再根據余弦定理和基本不等式,即可求出,根據三角形的面積公式即可求出答案.【題目詳解】(1).令,k∈Z,即時,,取最小值,所以,所求的取值集合是;(2)由,得,因為,所以,所以,.在中,由余弦定理,得,即,當且僅當時取等號,所以的面積,因此的面積的最大值為.【答
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度水利工程項目投標擔保委托保證合同3篇
- 二零二五版葫蘆島市房屋繼承合同范本3篇
- 基于二零二五年業(yè)績目標的小型餐飲店面館飯店加盟合同3篇
- 二零二五年湖南機關事業(yè)單位合同制工人醫(yī)療保險聘用合同3篇
- 二零二五版電梯門套工程安全風險評估與應急預案合同3篇
- 二零二五年電子商務糾紛解決機制合同2篇
- 二零二五年度辣椒種植與農業(yè)科技創(chuàng)新合作合同3篇
- 二零二五年度物流配送中心場地租賃合同BF06023篇
- 二零二五年度服裝調換貨及退貨處理合同范本3篇
- 二零二五年度酒店住宿代理服務合同示范文本2篇
- 新版DFMEA基礎知識解析與運用-培訓教材
- 制氮機操作安全規(guī)程
- 衡水市出租車駕駛員從業(yè)資格區(qū)域科目考試題庫(全真題庫)
- 護理安全用氧培訓課件
- 《三國演義》中人物性格探析研究性課題報告
- 注冊電氣工程師公共基礎高數輔導課件
- 土方勞務分包合同中鐵十一局
- 乳腺導管原位癌
- 冷庫管道應急預案
- 司法考試必背大全(涵蓋所有法律考點)
- 公共部分裝修工程 施工組織設計
評論
0/150
提交評論