2022年福建省廈門市第一中學數學九上期末統(tǒng)考模擬試題含解析_第1頁
2022年福建省廈門市第一中學數學九上期末統(tǒng)考模擬試題含解析_第2頁
2022年福建省廈門市第一中學數學九上期末統(tǒng)考模擬試題含解析_第3頁
2022年福建省廈門市第一中學數學九上期末統(tǒng)考模擬試題含解析_第4頁
2022年福建省廈門市第一中學數學九上期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.若拋物線y=ax2+2ax+4(a<0)上有A(-,y1),B(-

,y2),C(

,y3)三點,則y1,y2,y3的大小關系為()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y3<y12.已知⊙O的半徑為6cm,OP=8cm,則點P和⊙O的位置關系是()A.點P在圓內 B.點P在圓上 C.點P在圓外 D.無法判斷3.如圖,電線桿的高度為,兩根拉線與相互垂直,,則拉線的長度為(、、在同一條直線上)()A. B. C. D.4.如圖,某廠生產一種扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用紙糊的,若扇子完全打開攤平時紙面面積為πcm2,則扇形圓心角的度數為()A.120° B.140° C.150° D.160°5.如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,連接DF,下列四個結論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正確的結論有()A.4個 B.3個 C.2個 D.1個6.在同一坐標系中,一次函數與二次函數的大致圖像可能是A. B. C. D.7.如圖,△ABC中,∠C=90°,AB=5,AC=4,且點D,E分別是AC,AB的中點,若作半徑為3的⊙C,則下列選項中的點在⊙C外的是()A.點B B.點D C.點E D.點A8.如圖,在一張矩形紙片中,對角線,點分別是和的中點,現將這張紙片折疊,使點落在上的點處,折痕為,若的延長線恰好經過點,則點到對角線的距離為().A. B. C. D.9.下列事件中,是必然事件的是()A.明天一定有霧霾B.國家隊射擊運動員射擊一次,成績?yōu)?0環(huán)C.13個人中至少有兩個人生肖相同D.購買一張彩票,中獎10.如果關于x的分式方程有負分數解,且關于x的不等式組的解集為x<-2,那么符合條件的所有整數a的積是()A.-3 B.0 C.3 D.911.如圖,一次函數y=﹣x+3的圖象與反比例函數y=﹣的圖象交于A,B兩點,則不等式|﹣x+3|>﹣的解集為()A.﹣1<x<0或x>4 B.x<﹣1或0<x<4C.x<﹣1或x>0 D.x<﹣1或x>412.如圖,為的直徑,點是弧的中點,過點作于點,延長交于點,若,,則的直徑長為()A.10 B.13 C.15 D.1.二、填空題(每題4分,共24分)13.二次函數的圖象經過點(4,﹣3),且當x=3時,有最大值﹣1,則該二次函數解析式為_____.14.如圖是甲、乙兩人同一地點出發(fā)后,路程隨時間變化的圖象.(1)甲的速度______乙的速度.(大于、等于、小于)(2)甲乙二人在______時相遇;(3)路程為150千米時,甲行駛了______小時,乙行駛了______小時.15.已知二次函數y=ax2+bx+c的圖象如圖所示,則a_____1,b_____1,c_____1.16.如圖,四邊形ABCD內接于⊙O,AB是⊙O的直徑,過點C作⊙O的切線交AB的延長線于點P,若∠P=40°,則∠ADC=____°.17.在中,,,,則的值是__________.18.我國古代數學著作《增刪算法統(tǒng)宗》記載“圓中方形”問題:“今有圓田一段,中間有個方池,丈量田地待耕犁,恰好三分在記,池面至周有數,每邊三步無疑,內方圓徑若能知,堪作算中第一.”其大意為:有一塊圓形的田,中間有一塊正方形水池,測量出除水池外圓內可耕地的面積恰好72平方步,從水池邊到圓周,每邊相距3步遠.如果你能求出正方形的邊長是x步,則列出的方程是_______________.三、解答題(共78分)19.(8分)如圖(1),某數學活動小組經探究發(fā)現:在⊙O中,直徑AB與弦CD相交于點P,此時PA·PB=PC·PD(1)如圖(2),若AB與CD相交于圓外一點P,上面的結論是否成立?請說明理由.(2)如圖(3),將PD繞點P逆時針旋轉至與⊙O相切于點C,直接寫出PA、PB、PC之間的數量關系.(3)如圖(3),直接利用(2)的結論,求當PC=,PA=1時,陰影部分的面積.20.(8分)如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點.(1)求該拋物線的解析式;(2)求該拋物線的對稱軸以及頂點坐標;(3)設(1)中的拋物線上有一個動點P,當點P在該拋物線上滑動到什么位置時,滿足S△PAB=8,并求出此時P點的坐標.21.(8分)計算:(1)sin260°﹣tan30°?cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°22.(10分)如圖,已知AB是⊙O的直徑,點C在⊙O上,點P是AB延長線上一點,∠BCP=∠A.(1)求證:直線PC是⊙O的切線;(2)若CA=CP,⊙O的半徑為2,求CP的長.23.(10分)如圖,河流兩岸PQ,MN互相平行,C、D是河岸PQ上間隔50m的兩個電線桿,某人在河岸MN上的A處測得∠DAB=30°,然后沿河岸走了100m到達B處,測得∠CBF=70°,求河流的寬度(結果精確到個位,=1.73,sin70°=0.94,cos70°=0.34,tan70°=2.75)24.(10分)永祚寺雙塔,又名凌霄雙塔,是山西省會太原現存古建筑中最高的建筑.位于太原市城區(qū)東南向山腳畔.數學活動小組的同學對其中一塔進行了測量.測量方法如下:如圖所示,間接測得該塔底部點到地面上一點的距離為,塔的頂端為點,且,在點處豎直放一根標桿,其頂端為,在的延長線上找一點,使三點在同一直線上,測得.(1)方法1,已知標桿,求該塔的高度;(2)方法2,測得,已知,求該塔的高度.25.(12分)甲、乙兩人都握有分別標記為A、B、C的三張牌,兩人做游戲,游戲規(guī)則是:若兩人出的牌不同,則A勝B,B勝C,C勝A;若兩人出的牌相同,則為平局.(1)用樹狀圖或列表等方法,列出甲、乙兩人一次游戲的所有可能的結果;(2)求出現平局的概率.26.如圖,在平面直角坐標系中,△ABC的頂點坐標為A(﹣1,1)、B(0,﹣2)、C(1,0),點P(0,2)繞點A旋轉180°得到點P1,點P1繞點B旋轉180°得到點P2,點P2繞點C旋轉180°得到點P3,(1)在圖中畫出點P1、P2、P3;(2)繼續(xù)將點P3繞點A旋轉180°得到點P4,點P4繞點B旋轉180°得到點P5,…,按此作法進行下去,則點P2020的坐標為.

參考答案一、選擇題(每題4分,共48分)1、C【分析】根據拋物線y=ax2+2ax+4(a<0)可知該拋物線開口向下,可以求得拋物線的對稱軸,又因為拋物線具有對稱性,從而可以解答本題.【詳解】解:∵拋物線y=ax2+2ax+4(a<0),∴對稱軸為:x=,∴當x<?1時,y隨x的增大而增大,當x>?1時,y隨x的增大而減小,∵A(?,y1),B(?,y2),C(,y3)在拋物線上,且?<?,?0.5<,∴y3<y1<y2,故選:C.【點睛】本題考查二次函數的性質,解題的關鍵是明確二次函數具有對稱性,在對稱軸的兩側它的增減性不一樣.2、C【分析】根據點與圓的位置關系即可求解.【詳解】∵⊙O的半徑為6cm,OP=8cm,∴點P到圓心的距離OP=8cm,大于半徑6cm,∴點P在圓外,故選:C.【點睛】本題考查了點與圓的位置關系:設⊙O的半徑為r,點P到圓心的距離OP=d,則有:①點P在圓外?d>r;②點P在圓上?d=r;③點P在圓內?d<r.3、B【分析】先通過等量代換得出,然后利用余弦的定義即可得出結論.【詳解】故選:B.【點睛】本題主要考查解直角三角形,掌握余弦的定義是解題的關鍵.4、C【解析】根據扇形的面積公式列方程即可得到結論.【詳解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,設扇形圓心角的度數為α,∵紙面面積為πcm2,∴,∴α=150°,故選:C.【點睛】本題考了扇形面積的計算的應用,解題的關鍵是熟練掌握扇形面積計算公式:扇形的面積=.5、B【解析】試題解析:如圖,過D作DM∥BE交AC于N,∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于點F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,∴CF=2AF,故②正確;∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正確;設AE=a,AB=b,則AD=2a,由△BAE∽△ADC,有

,即b=,∴tan∠CAD=.故④不正確;故選B.【點睛】本題主要考查了相似三角形的判定和性質,矩形的性質,圖形面積的計算以及解直角三角形的綜合應用,正確的作出輔助線構造平行四邊形是解題的關鍵.解題時注意:相似三角形的對應邊成比例.6、D【分析】對于每個選項,先根據二次函數的圖象確定a和b的符號,然后根據一次函數的性質看一次函數圖象的位置是否正確,若正確,說明它們可在同一坐標系內存在.【詳解】A、由二次函數y=ax2+bx的圖象得a>0,b>0,則一次函數y=ax+b經過第一、二、三象限,所以A選項錯誤;B、由二次函數y=ax2+bx的圖象得a>0,b<0,則一次函數y=ax+b經過第一、三、四象限,所以B選項錯誤;C、由二次函數y=ax2+bx的圖象得a<0,b<0,則一次函數y=ax+b經過第一、二、四象限,所以C選項錯誤;D、由二次函數y=ax2+bx的圖象得a<0,b>0,則一次函數y=ax+b經過第二、三、四象限,所以D選項正確.故選:A.【點睛】本題考查了二次函數的圖象:二次函數的圖象為拋物線,可能利用列表、描點、連線畫二次函數的圖象.也考查了二次函數圖象與系數的關系.7、D【分析】分別求出AC、CE、BC、CD的長,根據點與圓的位置關系的判斷方法進行判斷即可.【詳解】如圖,連接CE,∵∠C=90°,AB=5,AC=4,∴BC==3,∵點D,E分別是AC,AB的中點,∴CD=AC=2,CE=AB=,∵⊙C的半徑為3,BC=3,,,∴點B在⊙C上,點E在⊙C內,點D在⊙C內,點A在⊙C外,故選:D.【點睛】本題考查點與圓的位置關系,解題的關鍵是求點到圓心的距離.8、B【分析】設DH與AC交于點M,易得EG為△CDH的中位線,所以DG=HG,然后證明△ADG≌△AHG,可得AD=AH,∠DAG=∠HAG,可推出∠BAH=∠HAG=∠DAG=30°,然后設BH=a,則BC=AD=AH=2a,利用勾股定理建立方程可求出a,然后在Rt△AGM中,求出GM,AG,再求斜邊AM上的高即為G到AC的距離.【詳解】如圖,設DH與AC交于點M,過G作GN⊥AC于N,∵E、F分別是CD和AB的中點,∴EF∥BC∴EG為△CDH的中位線∴DG=HG由折疊的性質可知∠AGH=∠B=90°∴∠AGD=∠AGH=90°在△ADG和△AHG中,∵DG=HG,∠AGD=∠AGH,AG=AG∴△ADG≌△AHG(SAS)∴AD=AH,AG=AB,∠DAG=∠HAG由折疊的性質可知∠HAG=∠BAH,∴∠BAH=∠HAG=∠DAG=∠BAD=30°設BH=a,在Rt△ABH中,∠BAH=30°∴AH=2a∴BC=AD=AH=2a,AB=在Rt△ABC中,AB2+BC2=AC2即解得∴DH=2GH=2BH=,AG=AB=∵CH∥AD∴△CHM∽△ADM∴∴AM=AC=,HM=DH=∴GM=GH-HM=在Rt△AGM中,∴故選B.【點睛】本題考查了矩形的性質,折疊的性質,全等三角形與相似三角形的判定與性質,以及勾股定理的應用,解題的關鍵是求出∠BAH=30°,再利用勾股定理求出邊長.9、C【分析】必然事件是一定發(fā)生的事情,據此判斷即可.【詳解】A.明天有霧霾是隨機事件,不符合題意;B.國家隊射擊運動員射擊一次,成績?yōu)?0環(huán)是隨機事件,不符合題意;C.總共12個生肖,13個人中至少有兩個人生肖相同是必然事件,符合題意;D.購買一張彩票,中獎是隨機事件,不符合題意;故選:C.【點睛】本題考查了必然事件與隨機事件,必然事件是一定發(fā)生的的時間,隨機事件是可能發(fā)生,也可能不發(fā)生的事件,熟記概念是解題的關鍵.10、D【解析】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式組的解集為x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合題意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合題意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合題意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合題意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合題意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合題意;把a=3代入整式方程得:﹣3x=1﹣x,即,符合題意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合題意,∴符合條件的整數a取值為﹣3;﹣1;1;3,之積為1.故選D.11、C【分析】先解方程組得A(﹣1,4),B(4,﹣1),然后利用函數圖象和絕對值的意義可判斷x<﹣1或x>1時,|﹣x+3|>﹣.【詳解】解方程組得或,則A(﹣1,4),B(4,﹣1),當x<﹣1或x>1時,|﹣x+3|>﹣,所以不等式|﹣x+3|>﹣的解集為x<﹣1或x>1.故選:C.【點睛】考核知識點:一次函數與反比例函數.解方程組求函數圖象交點是關鍵.12、C【分析】連接OD交AC于點G,根據垂徑定理以及弦、弧之間的關系先得出DF=AC,再由垂徑定理及推論得出DE的長以及OD⊥AC,最后在Rt△DOE中,根據勾股定理列方程求得半徑r,從而求出結果.【詳解】解:連接OD交AC于點G,∵AB⊥DF,∴,DE=EF.又點是弧的中點,∴,OD⊥AC,∴,∴AC=DF=12,∴DE=2.設的半徑為r,∴OE=AO-AE=r-3,在Rt△ODE中,根據勾股定理得,OE2+DE2=OD2,∴(r-3)2+22=r2,解得r=.∴的直徑為3.故選:C.【點睛】本題主要考查垂徑定理及其推論,弧、弦之間的關系以及勾股定理,解題的關鍵是通過作輔助線構造直角三角形,是中考??碱}型.二、填空題(每題4分,共24分)13、y=﹣2(x﹣3)2﹣1【分析】根據題意設出函數的頂點式,代入點(4,﹣3),根據待定系數法即可求得.【詳解】∵當x=3時,有最大值﹣1,∴設二次函數的解析式為y=a(x﹣3)2﹣1,把點(4,﹣3)代入得:﹣3=a(4﹣3)2﹣1,解得a=﹣2,∴y=﹣2(x﹣3)2﹣1.故答案為:y=﹣2(x﹣3)2﹣1.【點睛】本題考查了待定系數法求二次函數的解析式,熟練掌握待定系數法是解題的關鍵.14、(1)、小于;(2)、6;(3)、9、4【解析】試題分析:根據圖像可得:甲的速度小于乙的速度;兩人在6時相遇;甲行駛了9小時,乙行駛了4小時.考點:函數圖像的應用15、<<>【分析】由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.【詳解】解:由拋物線的開口方向向下可推出a<1;因為對稱軸在y軸左側,對稱軸為x=<1,又因為a<1,∴b<1;由拋物線與y軸的交點在y軸的正半軸上,∴c>1.【點睛】本題考查了二次函數的圖象和性質,屬于簡單題,熟悉二次函數的圖象是解題關鍵.16、115°【分析】根據過C點的切線與AB的延長線交于P點,∠P=40°,可以求得∠OCP和∠OBC的度數,又根據圓內接四邊形對角互補,可以求得∠D的度數,本題得以解決.【詳解】解:連接OC,如右圖所示,

由題意可得,∠OCP=90°,∠P=40°,

∴∠COB=50°,

∵OC=OB,

∴∠OCB=∠OBC=65°,

∵四邊形ABCD是圓內接四邊形,

∴∠D+∠ABC=180°,

∴∠D=115°,

故答案為:115°.【點睛】本題考查切線的性質、圓內接四邊形,解題的關鍵是明確題意,找出所求問題需要的條件.17、【分析】直接利用正弦的定義求解即可.【詳解】解:如下圖,在中,故答案為:.【點睛】本題考查的知識點是正弦的定義,熟記定義內容是解此題的關鍵.18、【分析】根據圓的面積-正方形的面積=可耕地的面積即可解答.【詳解】解:∵正方形的邊長是x步,圓的半徑為()步∴列方程得:.故答案為.【點睛】本題考查圓的面積計算公式,解題關鍵是找出等量關系.三、解答題(共78分)19、(1)成立,理由見解析;(2);(3)【分析】(1)連接AD、BC,得到∠D=∠B,可證△PAD∽△PCB,即可求解;(2)根據(1)中的結論即可求解;(3)連接OC,根據,PC=,PA=1求出PB=3,AO=CO=1,PO=2利用,得到AOC為等邊三角形,再分別求出,即可求解.【詳解】解:(1)成立理由如下:如圖,連接AD、BC則∠D=∠B∵∠P=∠P∴△PAD∽△PCB∴=∴PA·PB=PC·PD(2)當PD與⊙O相切于點C時,PC=PD,由(1)得PA·PB=PC·PD∴(3)如圖,連接OC,PC=,PA=1PB=3,AO=CO=1,PO=2PC與⊙O相切于點CPCO為直角三角形,AOC為等邊三角形====【點睛】此題主要考查圓內綜合問題,解題的關鍵是熟知相似三角形的判定與性質、切線的性質及扇形面積的求解公式.20、(1)y=x2﹣2x﹣1;(2)拋物線的對稱軸x=1,頂點坐標(1,﹣4);(1)(,4)或(,4)或(1,﹣4).【分析】(1)由于拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(1,0)兩點,那么可以得到方程x2+bx+c=0的兩根為x=﹣1或x=1,然后利用根與系數即可確定b、c的值.(2)根據S△PAB=2,求得P的縱坐標,把縱坐標代入拋物線的解析式即可求得P點的坐標.【詳解】解:(1)∵拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(1,0)兩點,∴方程x2+bx+c=0的兩根為x=﹣1或x=1,∴﹣1+1=﹣b,﹣1×1=c,∴b=﹣2,c=﹣1,∴二次函數解析式是y=x2﹣2x﹣1.(2)∵y=﹣x2﹣2x﹣1=(x﹣1)2﹣4,∴拋物線的對稱軸x=1,頂點坐標(1,﹣4).(1)設P的縱坐標為|yP|,∵S△PAB=2,∴AB?|yP|=2,∵AB=1+1=4,∴|yP|=4,∴yP=±4,把yP=4代入解析式得,4=x2﹣2x﹣1,解得,x=1±2,把yP=﹣4代入解析式得,﹣4=x2﹣2x﹣1,解得,x=1,∴點P在該拋物線上滑動到(1+2,4)或(1﹣2,4)或(1,﹣4)時,滿足S△PAB=2.【點睛】考點:1.待定系數法求二次函數解析式;2.二次函數的性質;1.二次函數圖象上點的坐標特征.21、(1);(2)2.【解析】根據特殊角的銳角三角函數的值即可求出答案.【詳解】(1)原式=()2﹣×+1=﹣+1=,(2)原式=(cos245°+sin245°)+(sin254°+cos254°)=1+1=2【點睛】本題考查了銳角三角函數的定義,解題的關鍵是熟練運用特殊角的銳角三角函數的定義.22、(1)見解析;(2)2【分析】(1)欲證明PC是⊙O的切線,只要證明OC⊥PC即可;(2)想辦法證明∠P=30°即可解決問題.【詳解】(1)∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直徑,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半徑,∴PC是⊙O的切線;(2)∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴PC==2.【點睛】本題考查了切線的判定,解直角三角形,圓周角定理,正確的識別圖形是解題的關鍵.23、河流的寬度CF的值約為37m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論